【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)直線
與
,
軸的交點分別為
,
,若點
在曲線
位于第一象限的圖象上運動,求四邊形
面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù),
).
(1)求曲線
和直線
的直角坐標(biāo)方程;
(2)若直線
與曲線
交于
,
兩點,且
,求以
為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
的定義域是
,對任意的
,有
.當(dāng)
時,
.給出下列四個關(guān)于函數(shù)
的命題:
①函數(shù)
是奇函數(shù);
②函數(shù)
是周期函數(shù);
③函數(shù)
的全部零點為
,
;
④當(dāng)算
時,函數(shù)
的圖象與函數(shù)
的圖象有且只有4個公共點.
其中,真命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的離心率為
,且經(jīng)過點
.
(1)求橢圓
的方程;
(2)過點
作直線
與橢圓
交于不同的兩點
,
,試問在
軸上是否存在定點
使得直線
與直線
恰關(guān)于
軸對稱?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其圖象相鄰的最高點之間的距離為
,將函數(shù)
的圖象向左平移
個單位長度后得到函數(shù)
的圖象,且
為奇函數(shù),則( )
A.
的圖象關(guān)于點
對稱B.
的圖象關(guān)于點
對稱
C.
在
上單調(diào)遞增D.
在
上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形
中,角
,
,
的對邊分別為
,
,
;
.
(1)求角
的大;
(2)在銳角三角形
中,角
,
,
的對邊分別為
,
,
,若
,
,
,求三角形
的內(nèi)角平分線
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校對全體大一新生開展了一次有關(guān)“人工智能引領(lǐng)科技新發(fā)展”的學(xué)術(shù)講座,隨后對人工智能相關(guān)知識進行了一次測試(滿分100分),如圖所示是在甲、乙兩個學(xué)院中各抽取的5名學(xué)生的成績的莖葉圖,由莖葉圖可知,下列說法正確的是( )
![]()
①甲、乙的中位數(shù)之和為159;
②甲的平均成績較低,方差較小;
③甲的平均成績較低,方差較大;
④乙的平均成績較高,方差較;
⑤乙的平均成績較高,方差較大.
A.①②④B.①③④C.①③⑤D.②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,一同學(xué)通過網(wǎng)絡(luò)平臺聽網(wǎng)課,在家堅持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com