【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,
<φ<
)的圖象關(guān)于直線
對稱,它的最小正周期為π,則( )
A. f(x)的圖象過點(diǎn)(0,
) B. f(x)在
上是減函數(shù)
C. f(x)的一個對稱中心是
D. f(x)的一個對稱中心是![]()
【答案】C
【解析】分析:根據(jù)周期求出ω,根據(jù)函數(shù)圖象關(guān)于直線x=
對稱求出φ,可得函數(shù)的解析式,根據(jù)函數(shù)的解析式判斷各個選項是否正確.
詳解:由題意可得
=π,∴ω=2,可得f(x)=Asin(2x+φ).
再由函數(shù)圖象關(guān)于直線x=
對稱,故f(
)=Asin(
+φ)=±A,故可取φ=
.
故函數(shù)f(x)=Asin(2x+
).
令2kπ+
≤2x+
≤2kπ+
,k∈z,求得 kπ+
≤x≤kπ+
π,k∈z,
故函數(shù)的減區(qū)間為[kπ+
,kπ+
],k∈z,故選項B不正確.
由于A不確定,故選項A不正確. 令2x+
=kπ,k∈z,可得 x=
,k∈z,
故函數(shù)的對稱中心為 (
,0),k∈z,故選項C正確.選項D不正確.
故選:C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實(shí)數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校高一年級研究性學(xué)習(xí)小組共有9名學(xué)生,其中有3名男生和6名女生.在研究性學(xué)習(xí)過程中,要進(jìn)行兩次匯報活動(即開題匯報和結(jié)題匯報),每次匯報都從這9名學(xué)生中隨機(jī)選1 人作為代表發(fā)言.設(shè)每人每次被選中與否均互不影響.
(1)求兩次匯報活動都由小組成員甲發(fā)言的概率;
(2)設(shè)
為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形
的邊長為
,
,
,將菱形
沿對角線
折起,得到三棱錐
,點(diǎn)
是棱
的中點(diǎn),
.
![]()
(
)求證:
平面
.
(
)求證:平面
平面
.
(
)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
和函數(shù)
在區(qū)間
上均為增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)若方程
有唯一解,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(
)若關(guān)于
的不等式
的解集為
,求實(shí)數(shù)
的取值范圍.
(
)若關(guān)于
的不等式
的解集是
,求
,
的值.
(
)若關(guān)于
的不等式
的解集是
,集合
,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線
的離心率為2,右焦點(diǎn)
到它的一條漸近線的距離為
。
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)
且與雙曲線的右支角不同的
兩點(diǎn)的直線
,當(dāng)點(diǎn)滿足
時,使得點(diǎn)
在直線
上的射影點(diǎn)
滿足
?若存在,求出直線
的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時間不超過兩小時免費(fèi),超過兩個小時的部分每小時收費(fèi)2元(不足1小時的部分按 1小時計算).有甲、乙兩人獨(dú)立來該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為
;兩小時以上且不超過三小時還車的概率分別為
;兩人租車時間都不會超過四小時.
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量
,求
的分布列.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com