【題目】如圖,在四棱錐
中,底面
是菱形,
,
是邊
的中點(diǎn).平面
平面
,
,
.線段
上的點(diǎn)
滿足
.
![]()
(1)證明:
面
;
(2)求直線
與平面
所成角的正弦值.
【答案】(1)見解析 (2)![]()
【解析】
(1)連接
交
于
,連接
,根據(jù)相似三角形和比例關(guān)系,證得
,再利用線面平行的判定定理,即可證得
平面
;
(2)以
為坐標(biāo)原點(diǎn),
分別為
軸建立空間直角坐標(biāo)系,得到向量
和平面
的法向量
,利用向量的夾角公式,即可求解.
(1)證明:連接
交
于
,連接
,
因?yàn)?/span>
是菱形,且
是
的中點(diǎn),所以
,且
,
又由已知
,于是
,所以
,
又
平面
,
平面
,所以
平面
.
(2)作
的中點(diǎn)
,連接
,則
,知
在平面
內(nèi).
又由題知,
,于是
,
因?yàn)槠矫?/span>
平面
,平面
平面
,
平面
,
所以
平面
,故
,
,
在菱形
中,
,所以
,
以
為坐標(biāo)原點(diǎn),
分別為
軸建立空間直角坐標(biāo)系,不妨設(shè)
,
因?yàn)?/span>
,
,
所以
為正三角形,
,
于是
,
,
,
,
所以
,
.
由
,且
,可得
,故
,
由
,
知
平面
,
所以
是平面
的一個(gè)法向量,
則
,
故直線
與平面
所成角的正弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱
的各條棱長(zhǎng)均相等,
為
的中點(diǎn),
分別是線段
和線段
上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足
.當(dāng)
運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( )
![]()
A. 平面
平面
B. 三棱錐
的體積為定值
C.
可能為直角三角形 D. 平面
與平面
所成的銳二面角范圍為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上有唯一零點(diǎn),試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2x+4|+|x-3|.
(1)解關(guān)于x的不等式f(x)<8;
(2)對(duì)于正實(shí)數(shù)a,b,函數(shù)g(x)=f(x)-3a-4b只有一個(gè)零點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程是
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為![]()
(Ⅰ)求曲線
的普通方程與直線
的直角坐標(biāo)方程;
(Ⅱ)已知直線
與曲線
交于
兩點(diǎn),點(diǎn)
是線段
的中點(diǎn),直線
與
軸交于點(diǎn)
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3月底,我國(guó)新冠肺炎疫情得到有效防控,但海外確診病例卻持續(xù)暴增,防疫物資供不應(yīng)求,某醫(yī)療器械廠開足馬力,日夜生產(chǎn)防疫所需物品.已知該廠有兩條不同生產(chǎn)線
和
生產(chǎn)同一種產(chǎn)品各10萬件,為保證質(zhì)量,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:
![]()
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為合格.
(1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,求兩件均由
生產(chǎn)線生產(chǎn)的概率;
(2)請(qǐng)完成下面質(zhì)量等級(jí)與生產(chǎn)線產(chǎn)品列聯(lián)表,并判斷能不能在誤差不超過0.05的情況下,認(rèn)為產(chǎn)品等級(jí)是否達(dá)到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關(guān).
|
| 合計(jì) | |
良好以上 | |||
合格 | |||
合計(jì) |
附:![]()
| 0.10 | 0.05 | 0.01 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年,山東省高考將全面實(shí)行“
選
”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對(duì)物理學(xué)科的喜好程度,某高中從高一年級(jí)學(xué)生中隨機(jī)抽取
人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有
人,不喜歡物理的有
人;女生喜歡物理的有
人,不喜歡物理的有
人.
(1)據(jù)此資料判斷是否有
的把握認(rèn)為“喜歡物理與性別有關(guān)”;
(2)為了了解學(xué)生對(duì)選科的認(rèn)識(shí),年級(jí)決定召開學(xué)生座談會(huì).現(xiàn)從
名男同學(xué)和
名女同學(xué)(其中
男
女喜歡物理)中,選取
名男同學(xué)和
名女同學(xué)參加座談會(huì),記參加座談會(huì)的
人中喜歡物理的人數(shù)為
,求
的分布列及期望
.
,其中
.
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)
的單調(diào)性;
(2)用
表示
中較大者,記函數(shù)
.若函數(shù)
在
上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(
)經(jīng)過點(diǎn)
,離心率為
,
,
分別為橢圓的左、右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
(
)在橢圓C上,求證;直線
與直線
關(guān)于直線l:
對(duì)稱.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com