【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:
,
,
,
,
,得到如圖所示的頻率分布直方圖:
![]()
(Ⅰ)寫出
的值;
(Ⅱ)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取3人 ,并用
表示其中男生的人數(shù),求
的分布列和數(shù)學(xué)期望.
【答案】(1)0.05;(2)詳見解析.
【解析】
試題分析:(1)直接由頻率分布直方圖即可計(jì)算出
的值即可;(2)首先求出在抽取的女生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和學(xué)生人數(shù)和在抽取的男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和學(xué)生人數(shù),然后確定隨機(jī)變量
的所有可能取值,再利用古典概型的計(jì)算公式分別求出各自的概率并列出其分布列,最后計(jì)算出其數(shù)學(xué)期望即可.
試題解析:(Ⅰ)
.
(Ⅱ)在抽取的女生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率為0.02×5=0.1,學(xué)生人數(shù)為0.1×20=2人.同理,在抽取的男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生人數(shù)為(0.03×5)×20=3人.
故
的可能取值為1,2,3.則
,
,
.
所以
的分布列為:
![]()
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)
,函數(shù)
.
(1)當(dāng)
時(shí),求
的最小值;
(2)當(dāng)
時(shí),判斷
的單調(diào)性,并說明理由;
(3)求實(shí)數(shù)
的范圍,使得對(duì)于區(qū)間
上的任意三個(gè)實(shí)數(shù)
,都存在以
為邊長的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
是在定義域內(nèi)的增函數(shù),求
的取值范圍;
(2)若函數(shù)
(其中
為
的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以
(單位:盒,
)表示這個(gè)開學(xué)季內(nèi)的市場需求量,
(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場需求量
和中位數(shù);
(2)將
表示為
的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤
不少于4800元的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的離心率
,且橢圓
經(jīng)過點(diǎn)
,直線
:
與橢圓
交于不同的兩點(diǎn)
,
.
(1)求橢圓
的方程;
(2)若△
的面積為1(
為坐標(biāo)原點(diǎn)),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,該函數(shù)圖像過點(diǎn)
,與點(diǎn)
相鄰函數(shù)圖像上的一個(gè)最高點(diǎn)為
.
(1)求該函數(shù)的解析式
;
(2)求函數(shù)
在區(qū)間
上的最值及其對(duì)應(yīng)的自變量
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場有獎(jiǎng)銷售中,購滿100元商品得1張獎(jiǎng)券,多購多得,1000張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎(jiǎng)券的中獎(jiǎng)概率;
(3)1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
是等比數(shù)列,
為數(shù)列
的前
項(xiàng)和,且![]()
(1)求數(shù)列
的通項(xiàng)公式.
(2)設(shè)
且
為遞增數(shù)列.若
求證: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)當(dāng)
時(shí),解不等式
;
(2)若關(guān)于
的方程
的解集中恰有一個(gè)元素,求
的取值范圍;
(3)設(shè)
,若對(duì)任意
,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過1,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com