欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1+a5=0,且a9=20.則S11=( 。
A.260B.220C.130D.110

分析 利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a1+a5=0,且a9=20.
∴$\left\{\begin{array}{l}{2{a}_{1}+4d=0}\\{{a}_{1}+8d=20}\end{array}\right.$,解得a1=-$\frac{20}{3}$,d=$\frac{10}{3}$.
則S11=-$11×\frac{20}{3}$+$\frac{10}{3}$×$\frac{11×10}{2}$=110.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.連續(xù)拋擲兩顆骰子,設(shè)第一顆向上點(diǎn)數(shù)為m,第二顆向上點(diǎn)數(shù)為n.
(Ⅰ)求m-n=3的概率;
(Ⅱ)求m•n為偶數(shù),且|m-n|<3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某民營(yíng)企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,根據(jù)以往經(jīng)驗(yàn)和市場(chǎng)調(diào)查,甲產(chǎn)品的利潤(rùn)與投入資金成正比,乙產(chǎn)品的利潤(rùn)與投入資金的算術(shù)平方根成正比,已知甲、乙產(chǎn)品分別投入資金4萬(wàn)元時(shí),所獲得利潤(rùn)(萬(wàn)元)情況如下:
投入資金甲產(chǎn)品利潤(rùn)乙產(chǎn)品利潤(rùn)
412.5
該企業(yè)計(jì)劃投入資金10萬(wàn)元生產(chǎn)甲、乙兩種產(chǎn)品,那么可獲得的最大利潤(rùn)(萬(wàn)元)是( 。
A.$\frac{9}{2}$B.$\frac{65}{16}$C.$\frac{35}{8}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,則“cosA=$\frac{c}$”是“△ABC為Rt△”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)為偶函數(shù),且當(dāng)x≥0時(shí),f(x)=x(1+x),則滿足f(x)≤2的x的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在等比數(shù)列{an}中,a1+a3=9,a2+a4=6,則a4+a6=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.三個(gè)數(shù)a=0.33,b=log${\;}_{\frac{1}{5}}$3,c=30.3之間的大小關(guān)系是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知a,b∈R,則“|b|+a<0”是“b2<a2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某地一天中6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)T=Asin(ωt+φ)+B(其中$\frac{π}{2}$<φ<π)6時(shí)至14時(shí)期間的溫度變化曲線如圖所示,它是上述函數(shù)的半個(gè)周期的圖象,那么圖中曲線對(duì)應(yīng)的函數(shù)解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

查看答案和解析>>

同步練習(xí)冊(cè)答案