分析 先根據(jù)題意畫出圖形,再設(shè)三棱柱外接球的球半徑為r,利用在直角三角形ADO中的邊的關(guān)系求出正三棱本的高,作出空間直角坐標系,利用向量法能求出異面直線AB1與BC1所成角的余弦值.
解答 解:設(shè)三棱柱外接球的球心為O,球半徑為r,![]()
三棱柱的底面三角形ABC的中心為D,如圖,
∵正三棱柱ABC-A1B1C1底面△ABC的邊長為3,此三棱柱的外接球的半徑為$\sqrt{7}$,
∴OA=$\sqrt{7}$,AD=$\frac{2}{3}×\sqrt{{3}^{2}-(\frac{3}{2})^{2}}$=$\sqrt{3}$,
∴OD=$\sqrt{7-3}$=2,∴AA1=4,
以A為原點,以過A在平面ABC中作AC的垂線為x軸,以AC為y軸,AA1為z軸,
建立空間直角坐標系,
A(0,0,0),B($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,0),
B1($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,4),C1(0,3,4),
$\overrightarrow{A{B}_{1}}$=($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,4),$\overrightarrow{B{C}_{1}}$=(-$\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,4),
設(shè)異面直線AB1與BC1所成角為θ,
則cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{B{C}_{1}}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{B{C}_{1}}|}$=$\frac{\frac{23}{2}}{25}$=$\frac{23}{50}$.
∴異面直線AB1與BC1所成角的余弦值為$\frac{23}{50}$.
故答案為:$\frac{23}{50}$.
點評 本題考查三棱錐、球、空間中線線、線面間的相互關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | $\frac{\sqrt{2}+1}{2}$ | C. | $\frac{3+2\sqrt{2}}{2}$ | D. | $\frac{\sqrt{5}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{8}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{32}{3}$ | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | π | C. | 4π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{4}{3}$π | B. | $\frac{4\sqrt{2}}{3}$π | C. | 4π | D. | 4$\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com