【題目】已知函數(shù)
,對于函數(shù)
有下述四個結論:
①函數(shù)
在其定義域上為增函數(shù);
②對于任意的
,都有
成立;
③
有且僅有兩個零點;
④若
在點
處的切線也是
的切線,則
必是
零點.
其中所有正確的結論序號是( )
A.①②③B.①②C.②③④D.②③
【答案】C
【解析】
利用特殊值法可判斷①的正誤;推導出當
時
,從而可判斷②的正誤;利用導數(shù)研究函數(shù)
的單調(diào)性,結合零點存在定理可判斷③的正誤;利用導數(shù)的幾何意義得出等式,進而可判斷④的正誤.綜合可得出結論.
,
,
所以,函數(shù)
在其定義域上不是增函數(shù),①錯;
∵當
時,則
,因此
成立,②對;
函數(shù)
的定義域為
,且
,
所以,函數(shù)
在區(qū)間
和
上均為增函數(shù),
,
,
,即函數(shù)
在區(qū)間
上有且僅有
個零點.
,
,
,
所以,函數(shù)
區(qū)間
上有且僅有
個零點.
因此,函數(shù)
有且僅有兩個零點,③對;
在點
處的切線
的方程
.
又
也是
的切線,設其切點為
,則
的斜率
,
從而直線
的斜率
,
,即切點為
,
又點
在
上,
,
即
必是函數(shù)
的零點,④對.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形ABCD中(如圖1),
,
,
,
,
,點E在CD上,且
,將
沿AE折起,使得平面
平面ABCE(如圖2),G為AE中點.
![]()
(Ⅰ)求四棱錐
的體積;
(Ⅱ)在線段BD上是否存在點P,使得
平面ADE?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
:
,
,
,
,
,.
.,
,
,
,
,
,
,
…的前n項和為
,正整數(shù)
,
滿足:①
,②
是滿足不等式
的最小正整數(shù),則
( )
A.6182B.6183C.6184D.6185
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐
的底面
是矩形,
底面
,且
,設E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.
![]()
(1)求證:
平面
;
(2)求直線FH與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為準備參加市運動會,對本校甲、乙兩個田徑隊中
名跳高運動員進行了測試,并用莖葉圖表示出本次測試
人的跳高成績(單位:
).跳高成績在
以上(包括
)定義為“合格”,成績在
以下(不包括
)定義為“不合格”.鑒于乙隊組隊晚,跳高成績相對較弱,為激勵乙隊隊隊,學校決定只有乙隊中“合格”者才能參加市運動會開幕式旗林隊.
![]()
(1)求甲隊隊員跳高成績的中位數(shù);
(2)如果用分層抽樣的方法從甲、乙兩隊所有的運動員中共抽取
人,則
人中“合格”與“不合格”的人數(shù)各為多少;
(3)若從所有“合格”運動員中選取
名,用
表示所選運動員中能參加市運動會開幕式旗林隊的人數(shù),試求
的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=(sinx+cosx)2
cos(2x+π).
(1)求函數(shù)f(x)的最小正周期;
(2)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若
,且a=2,求△ABC的面積.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com