【題目】已知函數(shù)
的最小正周期為
,函數(shù)的圖象沿
軸向右平移
個(gè)單位長(zhǎng)度后關(guān)于
軸對(duì)稱,則下列結(jié)論正確的是______.(填序號(hào))
①
是函數(shù)
圖象的一個(gè)對(duì)稱中心;
②
在區(qū)間
上的最小值為-2;
③
的單調(diào)遞增區(qū)間是
;
④函數(shù)
的圖象與直線
在
時(shí)只有一個(gè)交點(diǎn).
【答案】②③
【解析】
根據(jù)題意求出函數(shù)的關(guān)系式,進(jìn)一步利用正弦型函數(shù)的性質(zhì),逐項(xiàng)分析求出結(jié)果.
由函數(shù)的最小正周期公式可得:
,
函數(shù)![]()
,
將其圖象沿
軸向右平移
個(gè)單位長(zhǎng)度后得:
,由其圖象關(guān)于
軸對(duì)稱,則
,由
得
,即
.
對(duì)于①,∵
,∴故①不正確;
對(duì)于②,∵
,∴
,∴
,則
在區(qū)間
上的最小值為-2,故②正確;
對(duì)于③,
,化簡(jiǎn)得,
,
的單調(diào)遞增區(qū)間是
,故③正確;
對(duì)于④,令
,即
,
,或
,解得,
或
,令
,即
或
,函數(shù)
的圖象與直線
在區(qū)間
上有兩個(gè)交點(diǎn),故④不正確.
綜上,正確的是②③.
故答案為:②③
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,底面
為正方形,
平面
,
,點(diǎn)
為線段
的動(dòng)點(diǎn).記
與
所成角的最小值為
,當(dāng)
為線段
中點(diǎn)時(shí),二面角
的大小為
,二面角
的大小為
,則
,
,
的大小關(guān)系是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
![]()
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an},對(duì)任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常數(shù)).
(1)當(dāng)k=0,b=3,p=﹣4時(shí),求a1+a2+a3+…+an;
(2)當(dāng)k=1,b=0,p=0時(shí),若a3=3,a9=15,求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{an}中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng)k=1,b=0,p=0時(shí),設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a2﹣a1=2,試問(wèn):是否存在這樣的“封閉數(shù)列”{an},使得對(duì)任意n∈N*,都有Sn≠0,且
.若存在,求數(shù)列{an}的首項(xiàng)a1的所有取值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)若在
上存在一點(diǎn)
,使得
成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=m(x﹣2)+2與圓C:x2+y2=9交于A,B兩點(diǎn),則使弦長(zhǎng)|AB|為整數(shù)的直線l共有( )
A.6條B.7條C.8條D.9條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)有窮數(shù)列的每相鄰兩項(xiàng)之間插入這兩項(xiàng)的和,形成新的數(shù)列,我們把這樣的操作稱為該數(shù)列的一次“Z拓展”.如數(shù)列1,2第1次“Z拓展”后得到數(shù)列1,3,2,第2次“Z拓展”后得到數(shù)列1,4,3,5,2.設(shè)數(shù)列a,b,c經(jīng)過(guò)第n次“Z拓展”后所得數(shù)列的項(xiàng)數(shù)記為Pn,所有項(xiàng)的和記為Sn.
(1)求P1,P2;
(2)若Pn≥2020,求n的最小值;
(3)是否存在實(shí)數(shù)a,b,c,使得數(shù)列{Sn}為等比數(shù)列?若存在,求a,b,c滿足的條件;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系
中,過(guò)橢圓
:
右焦點(diǎn)的直線
交
于
,
兩點(diǎn),且橢圓
的離心率為
.
(1)求橢圓
的方程;
(2)
,
為
上的兩點(diǎn),若四邊形
的對(duì)角線
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有邊長(zhǎng)均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無(wú)滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長(zhǎng)分別為
,
,
,
,則( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com