【題目】已知橢圓
的短軸兩端點與左焦點圍成的三角形面積為3,短軸兩端點與長軸一端點圍成的三角形面積為2,設橢圓
的左、右頂點分別為
是橢圓
上除
兩點外一動點.
(1)求橢圓
的方程;
(2)過橢圓
的左焦點作平行于直線
(
是坐標原點)的直線
,
與曲線
交于
兩點,點
關于原點
的對稱點為
,求證:
成等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列
分別滿足:
,其中
,其中
,設數(shù)列
前n項和分別為
.
(1)若數(shù)列
為遞增數(shù)列,求數(shù)列
的通項公式;
(2)若數(shù)列
滿足:存在唯一的正整數(shù)k(
),使得
,則稱
為“k墜點數(shù)列”
(Ⅰ)若數(shù)列
為“6墜點數(shù)列",求
;
(Ⅱ)若數(shù)列
為“5墜點數(shù)列”,是否存在“p墜點數(shù)列”
,使得
,若存在,求正整數(shù)m的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列
,定義
為
的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”為
,記數(shù)列
的前
項和為
,若對一切的
,都有
恒成立,則實數(shù)
的取值范圍為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
,直線
與拋物線
交于不同兩點
、
,直線
、
與拋物線的另一交點分別為兩點
、
,連接
,點
關于直線
的對稱點為點
,連接
、
.
![]()
(1)證明:
;
(2)若
的面積
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
(其中
).對于不相等的實數(shù)
,
,設
,
下列說法正確的是( )
A.對于任意不相等的實數(shù)
,
,都有
;
B.對于任意的
及任意不相等的實數(shù)
,
,都有
;
C.對于任意的
,存在不相等的實數(shù)
,
,使得
;
D.對于任意的
,存在不相等的實數(shù)
,
,使得
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
是自然對數(shù)的底數(shù))
(1)若直線
為曲線
的一條切線,求實數(shù)
的值;
(2)若函數(shù)
在區(qū)間
上為單調(diào)函數(shù),求實數(shù)
的取值范圍;
(3)設
,若
在定義域上有極值點(極值點是指函數(shù)取得極值時對應的自變量的值),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司給年齡在
歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從
名參保人員中隨機抽取
名作為樣本進行分析,按年齡段
、
、
、
、
分成了五組,其頻率分布直方圖如下圖所示,參保年齡與每人每年應交納的保費如下表所示.
![]()
年齡(單位:歲) |
|
|
|
|
|
保費(單位:元) |
|
|
|
|
|
(1)求頻率分布直方圖中實數(shù)
的值,并求出該樣本年齡的中位數(shù);
(2)現(xiàn)分別在年齡段
、
、
、
、
中各選出
人共
人進行回訪.若從這
人中隨機選出
人,求這
人所交保費之和大于
元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
在點
處的切線斜率為0.
(1)試用含有
的式子表示
,并討論
的單調(diào)性;
(2)對于函數(shù)
圖象上的不同兩點
,
,如果在函數(shù)
圖象上存在點
,使得在點
處的切線
,則稱
存在“跟隨切線”.特別地,當
時,又稱
存在“中值跟隨切線”.試問:函數(shù)
上是否存在兩點
使得它存在“中值跟隨切線”,若存在,求出
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若對
時,不等式
恒成立,求實數(shù)a的取值范圍(e為自然對數(shù)的底數(shù));
(2)當
時,求函數(shù)
的極大值;
(3)求證:當
時,曲線
與直線
有且僅有一個公共點.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com