【題目】對于數(shù)列
,定義
為
的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”為
,記數(shù)列
的前
項(xiàng)和為
,若對一切的
,都有
恒成立,則實(shí)數(shù)
的取值范圍為___________.
【答案】![]()
【解析】
本題可根據(jù)優(yōu)值Hn的特點(diǎn)構(gòu)造數(shù)列{bn}:令bn=2n-1an,n∈N*,然后可通過先求出數(shù)列{bn}的通項(xiàng)公式來求出數(shù)列{an}的通項(xiàng)公式,再可根據(jù)數(shù)列{an}的通項(xiàng)公式寫出數(shù)列
的前n項(xiàng)和Sn的表達(dá)式,根據(jù)Sn為遞增數(shù)列轉(zhuǎn)化為求Sn最值問題,由此可得m的取值范圍.
由題意,可知對于數(shù)列
:
.
∴
.
可構(gòu)造數(shù)列
:令
,n∈N.
設(shè)數(shù)列
的前n項(xiàng)和為Tn.
∴
.n∈N.
∴①當(dāng)n=1時(shí),
;
②當(dāng)n≥2時(shí),
.
由①②,可得:
,n∈N.
∴
,n∈N.
∴數(shù)列
是以4為首項(xiàng),2為公差的等差數(shù)列.
對于數(shù)列
通項(xiàng)為:
,
![]()
,
令
,則
單調(diào)遞增,
當(dāng)
,
,
則
恒成立,∴
,
故答案為:
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在
,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
![]()
(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為
,
的芒果中隨機(jī)抽取6個(gè),再從這6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在
內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質(zhì)量低于250克的芒果以2元/個(gè)收購,高于或等于250克的以3元/個(gè)收購,通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),x軸的正半軸為極軸,建立坐標(biāo)系,兩個(gè)坐標(biāo)系取相同的單位長度.已知直線
的參數(shù)方程為
,曲線
的極坐標(biāo)方程為![]()
(1)求曲線
的直角坐標(biāo)方程
(2)設(shè)直線
與曲線
相交于
兩點(diǎn),
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,對于點(diǎn)
,若函數(shù)
滿足:
,都有
,就稱這個(gè)函數(shù)是點(diǎn)A的“限定函數(shù)”.以下函數(shù):①
,②
,③
,④
,其中是原點(diǎn)O的“限定函數(shù)”的序號是______.已知點(diǎn)
在函數(shù)
的圖象上,若函數(shù)
是點(diǎn)A的“限定函數(shù)”,則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為
,求隨機(jī)變量
的數(shù)學(xué)期望和方差.
參考公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在三棱臺
中,
,
,
.
![]()
(1)求證:
;
(2)過
的平面
分別交
,
于點(diǎn)
,
,且分割三棱臺
所得兩部分幾何體的體積比為
,幾何體
為棱柱,求
的長.
提示:臺體的體積公式
(
,
分別為棱臺的上、下底面面積,
為棱臺的高).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的短軸兩端點(diǎn)與左焦點(diǎn)圍成的三角形面積為3,短軸兩端點(diǎn)與長軸一端點(diǎn)圍成的三角形面積為2,設(shè)橢圓
的左、右頂點(diǎn)分別為
是橢圓
上除
兩點(diǎn)外一動(dòng)點(diǎn).
(1)求橢圓
的方程;
(2)過橢圓
的左焦點(diǎn)作平行于直線
(
是坐標(biāo)原點(diǎn))的直線
,
與曲線
交于
兩點(diǎn),點(diǎn)
關(guān)于原點(diǎn)
的對稱點(diǎn)為
,求證:
成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的離心率為
,左、右焦點(diǎn)分別為![]()
,點(diǎn)D在橢圓C上,
的周長為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓
上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:
為定值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com