【題目】已知遞增數(shù)列
的前
項和為
,且滿足
,
.
(1)求證:數(shù)列
為等差數(shù)列;
(2)試求所有的正整數(shù)
,使得
為整數(shù);
(3)證明:
.
【答案】(1)見解析(2)
(3)見解析
【解析】
(1)根據(jù)
,得出
,利用
,即可得出
,
或
,再結(jié)合題意
為遞增數(shù)列,確定得
,結(jié)合等差數(shù)列定義法,即可證出數(shù)列
為等差數(shù)列;
(2)由(1)知,數(shù)列
為等差數(shù)列,首項為
,公差
,則
,化簡得
,結(jié)合
和
,則
且
為奇數(shù),即可求出正整數(shù)
;
(3)由
,利用放縮法和裂項相消法求和得出
,進(jìn)而得出
,要證
,則需證
,轉(zhuǎn)化為證
,
當(dāng)
時,上式顯然成立,
時,原不等式左邊為
,原不等式右邊為
,則原不等式成立,從而即可證明
.
解:(1)由題可知,
,
,
則
①,
得
②,
由①-②得:
,
即:
,
即:
,
所以
或
,
即:
或
,
若
,則有
,而
,所以
,
即
,這與數(shù)列
遞增矛盾,所以
應(yīng)舍去,
所以
,故數(shù)列
為等差數(shù)列.
(2)由(1)知,數(shù)列
為等差數(shù)列,首項為
,公差
,
則
,
故:![]()
![]()
,
即
,
因為
,所以
,
由于
,則
且
為奇數(shù),
所以
,故
.
(3)由(2)可知,
,則
,
由于
,
即:![]()
所以![]()
即:
,
要證
,則需證
,
即證:
,
化為:
,
即為:
,
當(dāng)
時,上式顯然成立,即
成立,
又
時,原不等式左邊
,原不等式右邊
,則原不等式成立,
所以綜上可得:
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)團(tuán)委組織了“紀(jì)念抗日戰(zhàn)爭勝利73周年”的知識競賽,從參加競賽的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段
,
,…,
后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
![]()
(1)求第四組的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行了一次初一學(xué)生調(diào)研考試,為了解本次考試學(xué)生的數(shù)學(xué)學(xué)科成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為100分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在
之內(nèi))作為樣本(樣本容量
)進(jìn)行統(tǒng)計,按照
的分組方法作出頻率分布直方圖,并作出了樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在
的數(shù)據(jù)].
![]()
(Ⅰ)求頻率分布直方圖中的
的值,并估計學(xué)生分?jǐn)?shù)的中位數(shù);
(Ⅱ)字在選取的樣本中,從成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中恰有一人得分在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列
中,a1=2,a3+2是a2和a4的等差中項.
(1)求數(shù)列
的通項公式;
(2)記
=
log2
,求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們學(xué)校是一所有著悠久傳統(tǒng)文化的學(xué)校,我們學(xué)校全名叫重慶外國語學(xué)校(Chongqing Foreign Language School),又名四川外國語大學(xué)附屬外國語學(xué)校,簡稱“重外”,1981年,被定為四川省首批辦好的重點中學(xué);1997年,被列為重慶市教委首批辦好的直屬重點中學(xué)之一;2001年被國家教育部指定為20%高三學(xué)生享有保送資格的全國十三所學(xué)校之一,今年我校保送取得了非常輝煌的成績,目前為止,包括清華大學(xué),北京大學(xué)在內(nèi)目前共保送122名同學(xué),其中北京大學(xué),南開大學(xué),北京外國語大學(xué)保送的人數(shù)成公差為正數(shù)的等差數(shù)列,三個學(xué)校保送人數(shù)之和為24人,三個學(xué)校保送學(xué)生人數(shù)之積為312,則北京外國語大學(xué)保送的人數(shù)為(以上數(shù)據(jù)均來自于學(xué)校官網(wǎng))( )
A.10B.11C.13D.14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,
是坐標(biāo)原點,設(shè)函數(shù)
的圖象為直線
,且
與
軸、
軸分別交于
、
兩點,給出下列四個命題:
①存在正實數(shù)
,使
的面積為
的直線
僅有一條;
②存在正實數(shù)
,使
的面積為
的直線
僅有二條;
③存在正實數(shù)
,使
的面積為
的直線
僅有三條;
④存在正實數(shù)
,使
的面積為
的直線
僅有四條.
其中,所有真命題的序號是( ).
A. ①②③ B. ③④ C. ②④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖
,
是以
為直徑的圓上一段圓弧,
是以
為直徑的圓上一段圓弧,
是以
為直徑的圓上一段圓弧,三段弧構(gòu)成曲線
.則下面說法正確的是( )
![]()
A.曲線
與
軸圍成的面積等于![]()
B.
與
的公切線方程為:![]()
C.
所在圓與
所在圓的交點弦方程為:![]()
D.用直線
截
所在的圓,所得的弦長為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下對各事件發(fā)生的概率判斷正確的是( )
A.甲、乙兩人玩剪刀、石頭、布的游戲,則玩一局甲不輸?shù)母怕适?/span>![]()
B.從1名男同學(xué)和2名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中一男一女同學(xué)的概率為![]()
C.將一個質(zhì)地均勻的正方體骰子(每個面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是6的概率是![]()
D.從三件正品、一件次品中隨機(jī)取出兩件,則取出的產(chǎn)品全是正品的概率是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
①若
,則“
”成立的一個充分不必要條件是“
,且
”;
②存在
,使得
;
③若函數(shù)
的導(dǎo)函數(shù)是奇函數(shù),則實數(shù)
;
④平面上的動點
到定點
的距離比
到
軸的距離大1的點
的軌跡方程為
.
其中正確結(jié)論的序號為_________.(填寫所有正確的結(jié)論序號)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com