欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.$函數(shù)f(x)=cos(x-\frac{π}{6})的圖象的一條對稱軸為$( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.π

分析 由條件利用余弦函數(shù)的圖象的對稱性,得出結論.

解答 解:對于函數(shù)y=cos(x-$\frac{π}{6}$),令x-$\frac{π}{6}$=kπ,求得x=kπ+$\frac{π}{6}$,k∈Z,
故它的圖象的一條對稱軸方程為x=$\frac{π}{6}$,
故選:B.

點評 本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.點P(m,1)不在不等式x+y-2<0表示的平面區(qū)域內(nèi),則實數(shù)m的取值范圍是( 。
A.m<1B.m≤1C.m≥1D.m>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知向量$\overrightarrow a=(8,\frac{1}{2}),\overrightarrow b=(x,1)$,其中x>0,若$(\overrightarrow a-2\overrightarrow b)∥(2\overrightarrow a+\overrightarrow b)$,則x=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設點A,B分別是x,y軸上的兩個動點,AB=1.若$\overrightarrow{AC}$=λ$\overrightarrow{BA}$(λ>0).
(Ⅰ)求點C的軌跡Г;
(Ⅱ)過點D作軌跡Г的兩條切線,切點分別為P,Q,過點D作直線m交軌跡Г于不同的兩點E,F(xiàn),交PQ于點K,問是否存在實數(shù)t,使得$\frac{1}{|DE|}$+$\frac{1}{|DF|}$=$\frac{t}{|DK|}$恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)當a=-2時,求f(x)在x=2處的切線方程;
(2)若f(x)在區(qū)間[-2,2]上的最大值為22,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=ax,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))為端點的線段的中點在y軸上,那么f(x1)•f(x2)等于( 。
A.1B.aC.2D.a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.給出以下五個結論:
①經(jīng)過A(x1,y1),B(x2,y2)兩點的直線的方程為$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$;
②以A(x1,y1),B(x2,y2)為直徑的兩個端點的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0;
③平面上到兩個定點F1,F(xiàn)2的距離的和為常數(shù)2a的點的軌跡是橢圓;
④平面上到兩個定點F1,F(xiàn)2的距離的差為常數(shù)2a(2a<|F1F2|)的點的軌跡是雙曲線;
⑤平面上到定點F和到定直線l的距離相等的點的軌跡是拋物線.
其中正確結論有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設P(4,0),A、B是圓C:x2+y2=4上關于x軸對稱的任意兩個不同的點,連接PB交圓C于另一點E,直線AE與x軸交于點T,則|$\overrightarrow{AT}$|×|$\overrightarrow{TE}$|=4($\sqrt{3}$-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,已知點$A(-\sqrt{2},0)$,$B(\sqrt{2},0)$,E為動點,且直線EA與直線EB的斜率之積為λ(λ≠0)
(1)求動點E的軌跡方程,若動點E的軌跡和點A、B合并構成曲線C,討論曲線C的形狀;
(2)當λ=-$\frac{1}{2}$時,記曲線C的右焦點為F2,過點F2的直線l1,l2分別交曲線C于點P,Q和點M,N(點P、M、Q、N按逆時針順序排列),且l1⊥l2,求四邊形PMQN面積的最值.

查看答案和解析>>

同步練習冊答案