(本題滿分14分)
已知函數(shù)![]()
(1)![]()
(2)![]()
(1)
,
;(2)8<a<11。
解析試題分析:(1)由原題條件,可得到
.................3分
.........................6分
(2)![]()
![]()
........................9分
函數(shù)在定義域上位增函數(shù),即有3a-24<9,
.................................12分
解得a的取值范圍為8<a<11...................14分
考點(diǎn):有關(guān)抽象函數(shù)的問(wèn)題;函數(shù)的單調(diào)性。
點(diǎn)評(píng):本題主要考查抽象函數(shù)的賦值及單調(diào)性的靈活應(yīng)用,要解決抽象函數(shù)的有關(guān)問(wèn)題需要牢牢把握所給已知條件及關(guān)系式,對(duì)式子中的字母準(zhǔn)確靈活的賦值,變形構(gòu)造。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量
,設(shè)函數(shù)
的圖象關(guān)于直線
=π對(duì)稱,其中
為常數(shù),且
.
(Ⅰ)求函數(shù)
的最小正周期;
(Ⅱ)若
的圖象經(jīng)過(guò)點(diǎn)
,求函數(shù)
在區(qū)間
上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,且
在
處取得極值.
(1)求
的值;
(2)若當(dāng)
時(shí),
恒成立,求
的取值范圍;
(3)對(duì)任意的
是否恒成立?如果成立,給出證明,如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知函數(shù)
,
.
(Ⅰ)設(shè)
(其中
是
的導(dǎo)函數(shù)),求
的最大值;
(Ⅱ)求證: 當(dāng)
時(shí),有
;
(Ⅲ)設(shè)
,當(dāng)
時(shí),不等式
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題9分)已知函數(shù)
。
(Ⅰ)若
在
上的最小值是
,試解不等式
;
(Ⅱ)若
在
上單調(diào)遞增,試求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分15分) 已知函數(shù)f(x)=-1+2
sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點(diǎn)最近的對(duì)稱中心的坐標(biāo);
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)![]()
(1)求
時(shí)函數(shù)的解析式
(2)用定義證明函數(shù)在
上是單調(diào)遞增
(3)寫(xiě)出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知方程![]()
(
為實(shí)數(shù))有兩個(gè)不相等的實(shí)數(shù)根,分別求:
(Ⅰ)若方程
的根為一正一負(fù),則求實(shí)數(shù)
的取值范圍;
(Ⅱ)若方程
的兩根都在
內(nèi),則求實(shí)數(shù)
的取值范圍
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com