已知函數(shù)
(k為常數(shù),e=2.71828……是自然對數(shù)的底數(shù)),曲線
在點(diǎn)
處的切線與x軸平行。
(1)求k的值;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)
,其中
為
的導(dǎo)函數(shù),證明:對任意
,
。
(1)
;(2)單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(3)詳見解析.
解析試題分析:(1)先求導(dǎo)函數(shù)
,由導(dǎo)數(shù)的幾何意義得
,列方程求
;(2)求
的解集和定義域求交集,得單調(diào)遞增區(qū)間;求
的解集并和定義域求交集,得單調(diào)遞減區(qū)間,該題
,可觀察當(dāng)
時,
;
時,
.所以單調(diào)區(qū)間可求;(3)
思路一:考慮
的最大值,證明最大值小于
即可,但是考慮到解析式的復(fù)雜性,可對不等式等價變形;思路二:原不等式等價于![]()
![]()
,記
,利用導(dǎo)數(shù)可求其最大值為
,從圖象可以判斷
的圖象在直線
的上方,也就是說
恒成立,故![]()
![]()
,所以命題得證.
試題解析:(Ⅰ)由
得
由于曲線
在
處的切線與x軸平行,所以
,因此![]()
(Ⅱ)由(Ⅰ)得
,令
當(dāng)
時,
;當(dāng)
時,
又
,所以
時,
;
時,
. 因此
的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間![]()
(Ⅲ)證明因為
,所以
因此對任意
等價于
由(Ⅱ)知![]()
所以
因此當(dāng)
時,
單調(diào)遞增;當(dāng)
時
單調(diào)遞增. 所以
的最大值為
故
設(shè)
因為
,所以
時,
單調(diào)遞增,![]()
故
時,
即
所以
因此對任意![]()
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、導(dǎo)數(shù) 在單調(diào)性上的應(yīng)用;3、利用導(dǎo)數(shù)求函數(shù)的最值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)若
,則
,
滿足什么條件時,曲線
與
在
處總有相同的切線?
(2)當(dāng)
時,求函數(shù)
的單調(diào)減區(qū)間;
(3)當(dāng)
時,若
對任意的
恒成立,求
的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
.
(1)若
,函數(shù)
在區(qū)間
上是單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)設(shè)
,若對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(
).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)求證:當(dāng)
時,對于任意
,總有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
在
上的最大值;
(2)令
,若
在區(qū)間
上不單調(diào),求
的取值范圍;
(3)當(dāng)
時,函數(shù)
的圖象與
軸交于兩點(diǎn)
,且
,又
是
的導(dǎo)函數(shù).若正常數(shù)
滿足條件
.證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中a>0.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若直線
是曲線
的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)
,求
在區(qū)間
上的最大值(其中e為自然對的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為
億元,其中用于風(fēng)景區(qū)改造為
億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時具備下列三個條件:①每年用于風(fēng)景區(qū)改造費(fèi)用
隨每年改造生態(tài)環(huán)境總費(fèi)用
增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少
億元,至多
億元;③每年用于風(fēng)景區(qū)改造費(fèi)用
不得低于每年改造生態(tài)環(huán)境總費(fèi)用
的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用
的25%.
若
,
,請你分析能否采用函數(shù)模型y=
作為生態(tài)環(huán)境改造投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,試討論
的單調(diào)性;
(Ⅱ)設(shè)
,當(dāng)
時,若對任意
,存在
,使
,求實(shí)數(shù)
取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com