已知函數(shù)
.
(1)當(dāng)
時(shí),設(shè)
.討論函數(shù)
的單調(diào)性;
(2)證明當(dāng)
.
(1)當(dāng)
時(shí),
在
上是增函數(shù);
當(dāng)
時(shí),
在
上是減函數(shù),在
上是增函數(shù).
(2)見解析.
解析試題分析:(1)求導(dǎo)數(shù),研究導(dǎo)函數(shù)值的正負(fù),確定單調(diào)區(qū)間.
由于
,當(dāng)
時(shí),
.
所以,討論當(dāng)
,即
時(shí),當(dāng)
,即
時(shí),即得結(jié)論;
(2)構(gòu)造函數(shù)
,由于導(dǎo)數(shù),通過確定函數(shù)的單調(diào)性及最值,達(dá)到解題目的.
由于
,
所以令
,再次利用導(dǎo)數(shù)加以研究
,
當(dāng)
時(shí),
在
上是減函數(shù),
當(dāng)
時(shí),
在
上是增函數(shù),
又![]()
得到當(dāng)
時(shí),恒有
,即
,
在
上為減函數(shù),由
,得證.
(1)
,所以
. 2分
當(dāng)
時(shí),
,故有:
當(dāng)
,即
時(shí),
,
;
當(dāng)
,即
時(shí),
,
令
,得
;令
,得
, 5分
綜上,當(dāng)
時(shí),
在
上是增函數(shù);
當(dāng)
時(shí),
在
上是減函數(shù),在
上是增函數(shù). 6分
(2)設(shè)
,則
,
令
,則
, 8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/08/4/1mlvt3.png" style="vertical-align:middle;" />,所以當(dāng)
時(shí),
;
在
上是減函數(shù),
當(dāng)
時(shí),
,
在
上是增函數(shù),
又
所以當(dāng)
時(shí),恒有
,即
,
所以
在
上為減函數(shù),所以
,
即當(dāng)
時(shí),
. &nb
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,曲線
在點(diǎn)
處的切線與直線
垂直.
(1)求
的值;
(2)若對(duì)于任意的
,
恒成立,求
的范圍;
(3)求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=alnx+bx2圖象上點(diǎn)P(1,f(1))處的切線方程為2x-y-3=0.
(1)求函數(shù)y=f(x)的解析式;
(2)函數(shù)g(x)=f(x)+m-ln4,若方程g(x)=0在[
,2]上恰有兩解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-ax+1在x=2處的切線斜率為-
.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=
,對(duì)?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;
(3)證明:
+
+…+
<
(n∈N*,n≥2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
的最小值;
(2)當(dāng)
時(shí),求證:無(wú)論
取何值,直線
均不可能與函數(shù)
相切;
(3)是否存在實(shí)數(shù)
,對(duì)任意的
,且
,有
恒成立,若存在求出
的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-3ax2+3x+1.
(1)設(shè)a=2,求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)在區(qū)間(2,3)中至少有一個(gè)極值點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若函數(shù)
的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)
的圖象上任意一點(diǎn)的切線斜率為k,試求
的充要條件;
(3)若函數(shù)
的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過20件,每日產(chǎn)品廢品率
與日產(chǎn)量
(件)之間近似地滿足關(guān)系式
(日產(chǎn)品廢品率![]()
).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤(rùn)
日正品贏利額
日廢品虧損額)
(1)將該車間日利潤(rùn)
(千元)表示為日產(chǎn)量
(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com