【題目】在平面直角坐標系中,點
是曲線
:
(
為參數(shù))上的動點,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,以極點
為中心,將線段
順時針旋轉(zhuǎn)
得到
,設(shè)點
的軌跡為曲線
.
(1)求曲線
,
的極坐標方程;
(2)在極坐標系中,點
的坐標為
,射線
與曲線
分別交于
兩點,求
的面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形
中,
,
,
,以對角線
為折痕把
折起,使點
到圖2所示點
的位置,使得
.
![]()
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)當
時,若函數(shù)
在
上的最大值和最小值的和為1,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)若直線
與曲線
交于
、
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一塊平行四邊形園地
,經(jīng)測量,![]()
.擬過線段
上一點
設(shè)計一條直路
(點
在四邊形
的邊上,不計直路的寬度),將該園地分為面積之比為
的左,右兩部分分別種植不同花卉.設(shè)
(單位:m).
![]()
(1)當點
與點
重合時,試確定點
的位置;
(2)求
關(guān)于
的函數(shù)關(guān)系式;
(3)試確定點
的位置,使直路
的長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 17.0 | 16.5 | 15.5 | 13.8 | 12.2 |
(1)求y關(guān)于x的線性回歸方程
;
(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當年產(chǎn)量為多少時,年利潤w取到最大值?
參考公式: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計
的值:先請全校
名同學(xué)每人隨機寫下一個都小于
的正實數(shù)對
;再統(tǒng)計兩數(shù)能與
構(gòu)成鈍角三角形三邊的數(shù)對
的個數(shù)
;最后再根據(jù)統(tǒng)計數(shù)
估計
的值,那么可以估計
的值約為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com