分析 (1)設(shè)出等差數(shù)列{an}的首項(xiàng)為a1,由S1,S2,S4成等比數(shù)列列式求得a1=1.代入等差數(shù)列的通項(xiàng)公式得答案;
(2)把數(shù)列{an}的通項(xiàng)公式代入bn.利用裂項(xiàng)法求得數(shù)列{bn}的前n項(xiàng)和Tn;
解答 解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,由S1,S2,S4成等比數(shù)列,
得$(2{a}_{1}+d)^{2}={a}_{1}(4{a}_{1}+6d)$,
即$(2{a}_{1}+2)^{2}={a}_{1}(4{a}_{1}+12)$,
解得:a1=1.
∴an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)bn=$\frac{4}{{{a}_{n}a}_{n+1}}$=$\frac{4}{(2n-1)(2n+1)}$=2($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
則Tn=2(1-$\frac{1}{3}$+$\frac{1}{3}-\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=2(1-$\frac{1}{2n+1}$)=$\frac{4n}{2n+1}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查了裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com