【題目】已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個對稱中心到最近的一條對稱軸的距離為
,且在x=
處取得最大值.
(1)求λ的值.
(2)設(shè)
在區(qū)間
上是增函數(shù),求a的取值范圍.
【答案】
(1)解:f(x)=sinωx+λcosωx=
sin(ωx+φ),其中tanφ=λ;
由題可得
=
,
∴T=π,
∴ω=
=2,
∵x=
處取得最大值,
∴
+φ=
,
∴φ=
,
∴λ=tan
= ![]()
(2)解:由(1)可得f(x)=2sin(2x+
),
∴
=2asin(2x+
)+cos(4x﹣
)
=2asin(2x+
)+2cos2(2x﹣
)﹣1
=2asin(2x+
)+2sin2(2x+
)﹣1;
設(shè)t=sin(2x+
),其中x∈(
,
),
∴2x+
∈(
,π),
0<sin(2x+
)<
,
函數(shù)t=sin(2x+
)是單調(diào)減函數(shù),且0<t<
;
∴函數(shù)g(t)=2t2+2at﹣1,在對稱軸t=﹣
的左側(cè)單調(diào)遞減,
令﹣
≥
,解得a≤﹣1,
∴a的取值范圍是a≤﹣1
【解析】(1)化簡f(x)為正弦型函數(shù),利用函數(shù)的周期和最值求出ω、λ的值;(2)由f(x)寫出g(x)的解析式,利用換元法和復(fù)合函數(shù)的單調(diào)性,即可求出a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的兩角和與差的正弦公式,需要了解兩角和與差的正弦公式:
才能得出正確答案.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,a2=
,且an+1=
(n≥2)
(1)求a3 , a4;
(2)猜想an的表達(dá)式,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場比賽,每場均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽中獲勝的事件是獨(dú)立的,并且獲勝的概率均為
.
(1)求這支籃球隊(duì)首次獲勝前已經(jīng)負(fù)了兩場的概率;
(2)求這支籃球隊(duì)在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊(duì)在6場比賽中獲勝場數(shù)的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣2x , g(x)=lg(ax2﹣2x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為( )
A.(﹣1,0)
B.(0,1)
C.(﹣∞,1]
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD為正方形,△SAD是正三角形,P,Q分別是棱SC,AB的中點(diǎn),且平面SAD⊥平面ABCD. ![]()
(1)求證:PQ∥平面SAD;
(2)求證:SQ⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足
,
,(
N*).
(Ⅰ)寫出
的值;
(Ⅱ)設(shè)
,求
的通項(xiàng)公式;
(Ⅲ)記數(shù)列
的前
項(xiàng)和為
,求數(shù)列
的前
項(xiàng)和
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x2)的定義域?yàn)椋ī?,1],則函數(shù)f(x﹣1)的定義域?yàn)椋?/span> )
A.[2,10)
B.[1,10)
C.[1,2]
D.[0,2]
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com