求過(guò)點(diǎn)P(
,且被圓C:
截得的弦長(zhǎng)等于8的直線方程。
或![]()
解析試題分析:已知直線過(guò)一點(diǎn)求直線方程,應(yīng)分斜率存在和不存在兩種情況,斜率不存在時(shí)單獨(dú)驗(yàn)證,當(dāng)斜率存在時(shí)設(shè)為點(diǎn)斜式,再利用弦心距半弦長(zhǎng)和半徑之間的勾股關(guān)系得到關(guān)于k的方程,解方程可得k值,進(jìn)一步利用點(diǎn)斜式得直線方程.
若直線的斜率不存在即
時(shí),由
解得
,則弦長(zhǎng)
符合題意。若直線的斜率存在時(shí),設(shè)直線的方程:
,即
.由題意可知弦心距為
,所以
解得
,直線方程:
.綜上所述:直線方程是
或![]()
考點(diǎn):求直線方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C的方程為
,過(guò)點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,
直線AB恰好經(jīng)過(guò)橢圓T:
(a>b>0)的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)已知直線l:y=kx+
(k>0)與橢圓T相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),
求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
通過(guò)不同三點(diǎn)
,且直線
斜率為
,
(1)試求圓
的方程;
(2)若
是
軸上的動(dòng)點(diǎn),
分別切圓
于
兩點(diǎn),
①求證:直線
恒過(guò)一定點(diǎn);
②求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
:
與
軸相切,點(diǎn)
為圓心.
(1)求
的值;
(2)求圓
在
軸上截得的弦長(zhǎng);
(3)若點(diǎn)
是直線
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作直線
與圓
相切,
為切點(diǎn).求四邊形
面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l:y=x+m,m∈R.
(1)若以點(diǎn)M(2,0)為圓心的圓與直線l相切與點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(2)若直線l關(guān)于x軸對(duì)稱(chēng)的直線為lˊ,問(wèn)直線lˊ與拋物線C:
是否相切?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知半徑為5的圓的圓心在
軸上,圓心的橫坐標(biāo)是整數(shù),且與直線
相切.
求:(1)求圓的方程;
(2)設(shè)直線
與圓相交于
兩點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù)
,使得過(guò)點(diǎn)
的直線
垂直平分弦
?
若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標(biāo)為(2,1).若兩圓相交于A,B兩點(diǎn),且|AB|=4,求圓O2的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com