【題目】已知
=(sinx,cosx),
=(sinx,sinx),函數(shù)f(x)=
.
(1)求f(x)的對(duì)稱軸方程;
(2)求使f(x)≥1成立的x的取值集合;
(3)若對(duì)任意實(shí)數(shù)
,不等式f(x)﹣m<2恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:
= ![]()
令
,解得
.
∴f(x)的對(duì)稱軸方程為 ![]()
(2)解:由f(x)≥1得
,即
∴
.
故x的取值集合為
.
(3)解:∵
,∴
又∵
上是增函數(shù),∴ ![]()
又
,
∴
時(shí)的最大值是 ![]()
∵f(x)﹣m<2恒成立,
∴m>f(x)max﹣2,即 ![]()
∴實(shí)數(shù)m的取值范圍是
.
【解析】(1)利用向量的數(shù)量積運(yùn)算、二倍角的公式,兩角差的正弦公式化簡(jiǎn)解析式,由正弦函數(shù)的對(duì)稱軸和整體思想求出f(x)的對(duì)稱軸方程;(2)由(1)化簡(jiǎn)f(x)≥1,由正弦函數(shù)的圖象與性質(zhì)列出不等式,求出不等式的解集;(3)由由x的范圍求出
的范圍,利用正弦函數(shù)的性質(zhì)求出f(x)的最大值,根據(jù)條件和恒成立問題列出不等式,求出實(shí)數(shù)m的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求f(0)的值;
(2)求證:對(duì)任意x∈R,都有f(x)>0;
(3)解不等式f(3﹣2x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[
,1]
B.[0,1]
C.[
,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿足
≤0,
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測(cè)一個(gè)橋墩的工程費(fèi)用為256萬元,距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+
)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬元.假設(shè)需要新建n個(gè)橋墩.
(1)寫出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時(shí),需新建多少個(gè)橋墩才能使y最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)為定義在R奇函數(shù),當(dāng)x>0時(shí),f(x)=﹣2x2+4x+1,
(1)求:當(dāng)x<0時(shí),f(x)的表達(dá)式;
(2)用分段函數(shù)寫出f(x)的表達(dá)式;
(3)若函數(shù)h(x)=f(x)﹣a恰有三個(gè)零點(diǎn),求a的取值范圍(只要求寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)=
(an﹣an+1),a1=2,若bn=
.
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)令cn=
,{cn}的前n項(xiàng)和為Tn , 用數(shù)學(xué)歸納法證明Tn≥
(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
=(cos
x,sin
x),
=(cos
x,﹣sin
x),且x∈[0,
].求:
(1)
及
;
(2)若f(x)=
﹣2λ
的最小值是﹣
,求λ的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com