【題目】已知函數(shù)![]()
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)
內(nèi)角
的對(duì)邊分別為
,若
,
,
,且
,試求角
和角
.
【答案】(1)
(2)![]()
【解析】
(1)將
解析式第一項(xiàng)利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由正弦函數(shù)的遞增區(qū)間列出關(guān)于x的不等式,求出不等式的解集即可得到
的遞增區(qū)間;
(2)由(1)確定的
解析式,及
求出
的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出B的度數(shù),再由b與c的值,利用正弦定理求出
的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出C的度數(shù),由a大于b得到A大于B,檢驗(yàn)后即可得到滿足題意的B和C的度數(shù).
(1)
,
令
,解得![]()
故函數(shù)
的遞增區(qū)間為
.
(2)
,
,
由正弦定理得:
,
,
,
或
.
當(dāng)
時(shí),
:當(dāng)
時(shí),
(不合題意,舍)
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人參加某種選拔測(cè)試,在備選的10道題中,甲答對(duì)其中每道題的概率都是
,乙能答對(duì)其中的8道題,規(guī)定每次考試都從備選的10道題中隨機(jī)抽出4道題進(jìn)行測(cè)試,只有選中的4個(gè)題目均答對(duì)才能入選.
(1)求甲恰有2個(gè)題目答對(duì)的概率;
(2)求乙答對(duì)的題目數(shù)X的分布列;
(3)試比較甲,乙兩人平均答對(duì)的題目數(shù)的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將曲線
上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的
倍(縱坐標(biāo)不變),得到
的圖象,則下列說(shuō)法正確的是( )
A.
的圖象關(guān)于直線
對(duì)稱
B.
在
上的值域?yàn)?/span>![]()
C.
的圖象關(guān)于點(diǎn)
對(duì)稱
D.
的圖象可由
的圖象向右平移
個(gè)單位長(zhǎng)度得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,平面
底面
,其中底面
為等腰梯形,
,
,
,
,
為
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)
內(nèi)角
的對(duì)邊分別為
,若
,
,
,且
,試求角
和角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:萬(wàn)元)對(duì)年銷售量
(單位:噸)和年利潤(rùn)
(單位:萬(wàn)元)的影響.對(duì)近六年的年宣傳費(fèi)
和年銷售量
(
)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 |
|
|
|
|
|
|
年宣傳費(fèi) |
|
|
|
|
|
|
年銷售量 |
|
|
|
|
|
|
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)
(萬(wàn)元)與年銷售量
(噸)之間近似滿足關(guān)系式
(
).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
|
|
|
|
|
|
|
|
(1)根據(jù)所給數(shù)據(jù),求
關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)
與
,
的關(guān)系為
若想在
年達(dá)到年利潤(rùn)最大,請(qǐng)預(yù)測(cè)
年的宣傳費(fèi)用是多少萬(wàn)元?
附:對(duì)于一組數(shù)據(jù)
,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計(jì)分別為
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)當(dāng)
時(shí),求不等式
的解集;
(2)已知
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,關(guān)于
的不等式
只有1個(gè)整數(shù)解,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>
的函數(shù)
,如果同時(shí)滿足以下三個(gè)條件:①任意的
,總有
;②
;③若
,
,
,總有
成立,則稱函數(shù)
為理想函數(shù).
(1)證明:若函數(shù)
為理想函數(shù),則
;
(2)證明:函數(shù)
,
是理想函數(shù);
(3)證明:若函數(shù)
為理想函數(shù),假定存在
,使得
且
,則
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com