【題目】在直角坐標(biāo)系xoy中,已知曲線C:
(
為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
(1)求曲線C的極坐標(biāo)方程,若A,B為曲線C上的兩點,證明當(dāng)
時,
定值;
(2)若過點
且傾斜角為
的直線l與曲線C相交于A,B兩點,求
的值.
【答案】(1)
;(2)
.
【解析】
(1)把曲線
中的參數(shù)消去,可得普通方程,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線
的極坐標(biāo)方程,設(shè)出
,
的極坐標(biāo),由題意求得
與
,即可證明
是定值;
(2)寫出直線
的參數(shù)方程,代入曲線
的普通方程,再由根與系數(shù)的關(guān)系及參數(shù)
的幾何意義求解.
(1)由
為參數(shù)),消去參數(shù)
,可得曲線
的普通方程為
;
將
,
代入
,得
.
設(shè)
,
的極坐標(biāo)分別為
,
,
,
則
,
.
![]()
為定值;
(2)由題意,直線
的參數(shù)方程為
為參數(shù)),
代入
,得
.
設(shè)點
,
對應(yīng)的參數(shù)分別為
,
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x
y
2=0,拋物線C:y2=2px(p>0).
![]()
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標(biāo)為
;
②求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
,設(shè)函數(shù)
,且
的圖象過點
和點
.
(Ⅰ)求
的值;
(Ⅱ)將
的圖象向左平移
(
)個單位后得到函數(shù)
的圖象.若
的圖象上各最高點到點
的距離的最小值為1,求
的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第
個家庭的月收入
(單位:千元)與月儲蓄
(單位:千元)的數(shù)據(jù)資料,計算得
,
,
,
.
(1)求家庭的月儲蓄
關(guān)于月收入
的線性回歸方程
,并判斷變量
與
之間是正相關(guān)還是負(fù)相關(guān);
(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.(注:線性回歸方程
中,
,其中
,
為樣本平均值.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與地面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,首屆中國國際進(jìn)口博覽會的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬,如圖所示,在陽馬
中,
底面
.
(1)已知
,斜梁
與底面
所成角為
,求立柱
的長;(精確到
)
(2)求證:四面體
為鱉臑.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
……
分成9組,制成了如圖所示的頻率分布直方圖
![]()
(1)求頻率分布直方圖中
的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計
的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】化簡
(1)![]()
(2)![]()
【答案】(1)
;(2)
.
【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1
(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為![]()
試題解析:
(1)tan70°cos10°(
tan20°﹣1)
=cot20°cos10°(
﹣1)
=cot20°cos10°(
)
=
×cos10°×(
)
=
×cos10°×(
)
=
×(﹣
)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故
=![]()
點睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式 ;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結(jié)構(gòu)特征,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如遇到分式要通分等.
【題型】解答題
【結(jié)束】
18
【題目】平面內(nèi)給定三個向量![]()
(1)求![]()
(2)求滿足
的實數(shù)
.
(3)若
,求實數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的極坐標(biāo)方程是
,以極點為原點,以極軸為
軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
.
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
分別為左右焦點,
是橢圓
上點,且
.
(1)求橢圓
的方程;
(2)過
的直線
與橢圓
交于不同的兩點
,則
的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值以及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com