【題目】我國(guó)古代科學(xué)家祖沖之兒子祖暅在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”(“冪”是截面積,“勢(shì)”是幾何體的高),意思是兩個(gè)同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿(mǎn)足“冪勢(shì)既同”,則該不規(guī)則幾何體的體積為( )
![]()
A.
B.
C.
D. ![]()
【答案】A
【解析】
首項(xiàng)把三視圖轉(zhuǎn)換為幾何體,得該幾何體表示左邊是一個(gè)棱長(zhǎng)為2的正方體,右邊是一個(gè)長(zhǎng)為1,寬和高為2的長(zhǎng)方體截去一個(gè)底面半徑為1,高為2的半圓柱,進(jìn)一步利用幾何體的體積公式,即可求解,得到答案.
根據(jù)改定的幾何體的三視圖,可得該幾何體表示左邊是一個(gè)棱長(zhǎng)為2的正方體,右邊是一個(gè)長(zhǎng)為1,寬和高為2的長(zhǎng)方體截去一個(gè)底面半徑為1,高為2的半圓柱,
所以幾何體的體積為
,故選A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九世紀(jì)末,法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長(zhǎng)AB大于圓O的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求函數(shù)
在
上的最大值和最小值;
(2)若函數(shù)
為
上的單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,中華人民共和國(guó)成立70周年,為了慶祝建國(guó)70周年,某中學(xué)在全校進(jìn)行了一次愛(ài)國(guó)主義知識(shí)競(jìng)賽,共1000名學(xué)生參加,答對(duì)題數(shù)(共60題)分布如下表所示:
組別 |
|
|
|
|
|
|
頻數(shù) | 10 | 185 | 265 | 400 | 115 | 25 |
答對(duì)題數(shù)
近似服從正態(tài)分布
,
為這1000人答對(duì)題數(shù)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).
(1)估計(jì)答對(duì)題數(shù)在
內(nèi)的人數(shù)(精確到整數(shù)位).
(2)學(xué)校為此次參加競(jìng)賽的學(xué)生制定如下獎(jiǎng)勵(lì)方案:每名同學(xué)可以獲得2次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值與對(duì)應(yīng)的概率如下表所示.
獲得獎(jiǎng)品的價(jià)值(單位:元) | 0 | 10 | 20 |
概率 |
|
|
|
用
(單位:元)表示學(xué)生甲參與抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值,求
的分布列及數(shù)學(xué)期望.
附:若
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,已知
,
分別為線(xiàn)段
,
的中點(diǎn),
與
所成角的大小為90°,且
.
![]()
求證:(1)平面
平面
;
(2)
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
在
內(nèi)單調(diào)遞減,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)
有兩個(gè)極值點(diǎn)分別為
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
九章算術(shù)
給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線(xiàn)之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除
中,
,
,
,
,兩條平行線(xiàn)
與
間的距離為h,直線(xiàn)
到平面
的距離為
,則該羨除的體積為
已知某羨除的三視圖如圖所示,則該羨除的體積為
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線(xiàn)
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線(xiàn)
和圓
的普通方程;
(2)已知直線(xiàn)
上一點(diǎn)
,若直線(xiàn)
與圓
交于不同兩點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是圓A:
上任意一點(diǎn),B的坐標(biāo)為
,線(xiàn)段BP的垂直平分線(xiàn)和半徑AP交于點(diǎn)Q.當(dāng)點(diǎn)P在圓A上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線(xiàn)C.
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)若直線(xiàn)不經(jīng)過(guò)點(diǎn)
與曲線(xiàn)C交于M,N兩點(diǎn),且直線(xiàn)TM,TN的斜率之和為2,求證:直線(xiàn)l過(guò)定點(diǎn).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com