| A. | )d1=1,d2=2,d3=2008 | B. | )d1=1,d2=1,d3=2009 | ||
| C. | )d1=3,d2=5,d3=2003 | D. | )d1=2,d2=3,d3=2006 |
分析 根據(jù)題意,分別求出f(x)>g(x)、f(x)=g(x)與f(x)<g(x)在0≤x≤2011時的解集即可.
解答 解:∵f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1,
∴由f(x)>g(x)得,[x]x-[x]2>x-1,
即([x]-1)x>[x]2-1;
當(dāng)x∈[0,1)時,[x]=0,上式可化為x<1,∴x∈[0,1);
當(dāng)x∈[1,2)時,[x]=1,上式可化為0<0,∴x∈∅;
當(dāng)x∈[2,2011]時,[x]-1>0,上式可化為x>[x]+1,∴x∈∅;
∴f(x)>g(x)在0≤x≤2011時的解集為[0,1),故d1=1;
由f(x)=g(x)得,[x]x-[x]2=x-1,
即([x]-1)x=[x]2-1;
當(dāng)x∈[0,1)時,[x]=0,上式可化為x=1,∴x∈∅;
當(dāng)x∈[1,2)時,[x]=1,上式可化為0=0,∴x∈[1,2);
當(dāng)x∈[2,2011]時,[x]-1>0,上式可化為x=[x]+1,∴x∈∅;
∴f(x)=g(x)在0≤x≤2011時的解集為[1,2),故d2=1;
由f(x)<g(x)得,[x]x-[x]2<x-1,
即([x]-1)x<[x]2-1;
當(dāng)x∈[0,1)時,[x]=0,上式可化為x>1,∴x∈∅;
當(dāng)x∈[1,2)時,[x]=1,上式可化為0>0,∴x∈∅;
當(dāng)x∈[2,2011]時,[x]-1>0,上式可化為x<[x]+1,∴x∈[2,2011];
∴f(x)<g(x)在0≤x≤2011時的解集為[2,2011],故d3=2009.
綜上,d1=1,d2=1,d3=2009.
故選:B.
點評 本題考查了新定義的關(guān)于函數(shù)性質(zhì)以及不等式的解法和應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,$\frac{3}{2}$] | B. | (-∞,$\frac{3}{2}$) | C. | [$\frac{3}{2}$,+∞) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|-2<x<1} | B. | {x|x<-2或x≥3} | C. | {x|-2<x≤1} | D. | {x|-2<x<3且x≠1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{13}{18}$ | B. | $\frac{13}{23}$ | C. | $\frac{3}{18}$ | D. | $\frac{7}{23}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com