分析 先利用正弦定理將第一個等式邊化角,第二個式子切化弦,然后借助于和差化積公式化簡,兩者結(jié)合可以構(gòu)造出關(guān)于k的方程,求解即可.
解答 解:由正弦定理得sinA+sinB=ksinC,即2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$=2ksin$\frac{C}{2}$cos$\frac{C}{2}$=2kcos$\frac{C}{2}$cos$\frac{A-B}{2}$.
顯然cos$\frac{C}{2}≠0$.所以$cos\frac{A-B}{2}=ksin\frac{C}{2}=kcos\frac{A+B}{2}$.
所以$cos\frac{A}{2}cos\frac{B}{2}+sin\frac{A}{2}sin\frac{B}{2}$=$k(cos\frac{A}{2}cos\frac{B}{2}-sin\frac{A}{2}sin\frac{B}{2})$.
整理得$tan\frac{A}{2}tan\frac{B}{2}=\frac{k-1}{k+1}$①
由cot$\frac{A}{2}$+cot$\frac{B}{2}$=kcot$\frac{C}{2}$得$\frac{cos\frac{A}{2}}{sin\frac{A}{2}}+\frac{cos\frac{B}{2}}{sin\frac{B}{2}}=k×\frac{cos\frac{C}{2}}{sin\frac{C}{2}}$.
即$\frac{sin\frac{B}{2}cos\frac{A}{2}+cos\frac{B}{2}sin\frac{A}{2}}{sin\frac{A}{2}sin\frac{B}{2}}=k×\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$.
即$\frac{sin\frac{A+B}{2}}{sin\frac{A}{2}sin\frac{B}{2}}=k×\frac{sin\frac{A+B}{2}}{cos\frac{A}{2}cos\frac{B}{2}-sin\frac{A}{2}sin\frac{B}{2}}$.
化簡得:tan$\frac{A}{2}$tan$\frac{B}{2}$=$\frac{1}{k+1}$②
由①②得$\frac{k-1}{k+1}=\frac{1}{k+1}$,解得k=2.
點評 本題考查了利用三角變換的方法構(gòu)造方程解決三角形中的求值問題.強調(diào)化歸思想的應(yīng)用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com