【題目】以A表示值域為R的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)
組成的集合:對于函數(shù)
,存在一個正數(shù)M,使得函數(shù)
的值域包含于區(qū)間
.例如,當(dāng)
時,
. 現(xiàn)有如下命題:
①設(shè)函數(shù)
的定義域為D,則“
”的充要條件是“
”;
②若函數(shù)
,則
有最大值和最小值;
③若函數(shù)
的定義域相同,且
,則
;
④若函數(shù)
有最大值,則
.
其中的真命題有___________. (寫出所有真命題的序號)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數(shù)列,且![]()
B.
,
,
依次成公比為2的等比數(shù)列,且![]()
C.
,
,
依次成公比為
的等比數(shù)列,且![]()
D.
,
,
依次成公比為
的等比數(shù)列,且![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點
兩點.
(Ⅰ)求橢圓
的方程及離心率;
(Ⅱ)設(shè)
為第三象限內(nèi)一點且在橢圓
上,橢圓
與y軸正半軸交于B點,直線
與
軸交于點
,直線
與
軸交于點
,求證:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入
的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是( )
![]()
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知向量
,設(shè)
,向量
.
(1)若
,求向量
與
的夾角;
(2)若
對任意實數(shù)
都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(I)若
,求曲線
在
處的切線方程;
(II)討論函數(shù)
在
上的單調(diào)性;
(III)若存在
,使得
成立,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
是定義域為R的奇函數(shù),
.
(Ⅰ)若
,求m的取值范圍;
(Ⅱ)若
在
上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將集合M={1,2,3,...,15}表示為它的5個三元子集(三元集:含三個元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個三元集的元素之和為________;請寫出滿足上述條件的集合M的5個三元子集__________(只寫出一組)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若曲線
的一條切線經(jīng)過點
,求這條切線的方程.
(2)若關(guān)于
的方程
有兩個不相等的實數(shù)根x1,x2。
①求實數(shù)a的取值范圍;
②證明:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com