【題目】已知雙曲線
的右頂點到其一條漸近線的距離等于
,拋物線
的焦點與雙曲線
的右焦點重合,則拋物線
上的動點
到直線
和
距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
分析:由雙曲線的右頂點到漸近線的距離求出
,從而可確定雙曲線的方程和焦點坐標(biāo),進(jìn)而得到拋物線的方程和焦點,然后根據(jù)拋物線的定義將點M到直線
的距離轉(zhuǎn)化為到焦點的距離,最后結(jié)合圖形根據(jù)“垂線段最短”求解.
詳解:由雙曲線方程
可得,
雙曲線的右頂點為
,漸近線方程為
,即
.
∵雙曲線的右頂點到漸近線的距離等于
,
∴
,解得
,
∴雙曲線的方程為
,
∴雙曲線的焦點為
.
又拋物線
的焦點與雙曲線
的右焦點重合,
∴
,
∴拋物線的方程為
,焦點坐標(biāo)為
.如圖,
![]()
設(shè)點M到直線
的距離為
,到直線
的距離為
,則
,
∴
.
結(jié)合圖形可得當(dāng)
三點共線時,
最小,且最小值為點F到直線
的距離
.
故選B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AE
BD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD
平面BCD,如圖2所示。
![]()
(Ⅰ)求證:AE
平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值;
(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于非負(fù)整數(shù)集合
(非空),若對任意
,或者
,或者
,則稱
為一個好集合.以下記
為
的元素個數(shù).
(1)給出所有的元素均小于
的好集合.(給出結(jié)論即可)
(2)求出所有滿足
的好集合.(同時說明理由)
(3)若好集合
滿足
,求證:
中存在元素
,使得
中所有元素均為
的整數(shù)倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體
中,
,過
,
,
三點的平面截去長方體的一個角后,得到如圖所示的幾何體
,這個幾何體的體積為
.
![]()
(1)求棱
的長;
(2)求經(jīng)過
,
,
,
四點的球的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點,AC,BD交于點O.
![]()
(1)求證:OE∥平面PBC;
(2)求三棱錐E﹣PBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD
中,以D為原點建立空間直角坐標(biāo)系,E為B
的中點,F(xiàn)為
的中點,則下列向量中,能作為平面AEF的法向量的是( )
![]()
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的焦距為2
,左頂點與上頂點連線的斜率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點,當(dāng)|MN|的值最大時,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在
與
時都取得極值.
(1)求
的值與函數(shù)
的單調(diào)區(qū)間;
(2)若對
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com