已知函數(shù)
,
(1)當(dāng)
時,判斷并證明
的奇偶性;
(2)是否存在實數(shù)
,使得
是奇函數(shù)?若存在,求出
;若不存在,說明理由。
(1)偶函數(shù);(2)![]()
【解析】
試題分析:(1)定義法判斷函數(shù)奇偶性是常用的方法,定義域區(qū)間關(guān)于原點(diǎn)對稱的函數(shù)
,若
,則
為偶函數(shù),若
,則函數(shù)
為奇函數(shù);(2)f(x)是R奇函數(shù),則
對任意x∈R恒成立.
試題解析:(1)
,當(dāng)
時,
, 3分
,
∴f(x)是偶函數(shù)。 6分
(2)假設(shè)存在實數(shù)a使得f(x)是奇函數(shù),
∵
,
,
要使
對任意x∈R恒成立,即
恒成立, 9分
有
,即
恒成立, 12分
∴
.
14分
考點(diǎn):函數(shù)奇偶性判斷和應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
,其中
![]()
(1) 當(dāng)
滿足什么條件時,
取得極值?
(2) 已知
,且
在區(qū)間
上單調(diào)遞增,試用
表示出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知
函數(shù)
.
(1)當(dāng)a=3時,求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,
.
(1)當(dāng)
為何值時,
取得最大值,并求出其最大值;
(2)若
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,
(1)當(dāng)
且
時,證明:對
,
;
(2)若
,且
存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)數(shù)列
,若存在常數(shù)
,
,都有
,則稱數(shù)列
有上界。已知
,試判斷數(shù)列
是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,
.
(1)當(dāng)
時,求函數(shù)
的最小值;
(2)當(dāng)
時,討論函數(shù)
的單調(diào)性;
(3)是否存在實數(shù)
,對任意的
,且
,有
,恒成立,若存在求出
的取值范圍,若不存在,說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com