分析 由已知條件利用錯位相減法能求出{an}的前n項和Sn.
解答 解:∵an=$\frac{2n-1}{{2}^{n}}$,
∴{an}的前n項和:
Sn=$\frac{1}{2}+\frac{3}{{2}^{2}}+\frac{5}{{2}^{3}}+…+\frac{2n-1}{{2}^{n}}$,①
$\frac{1}{2}{S}_{n}$=$\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}+\frac{5}{{2}^{4}}+…+\frac{2n-1}{{2}^{n+1}}$,②
①-②,得:$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+2(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n}})-\frac{2n-1}{{2}^{n+1}}$
=$\frac{1}{2}+2×\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n+1}}$
=$\frac{3}{2}-\frac{n+\frac{3}{2}}{{2}^{n}}$,
∴Sn=3-$\frac{2n+3}{{2}^{n}}$.
點評 本題考查數(shù)列的前n項和的求法,是中檔題,解題時要認真審題,注意錯位相減法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [-3,3] | B. | {-3,3} | C. | (-3,3) | D. | (-∞,-3]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 與兩坐標軸相切 | B. | 與兩坐標軸均不相交 | ||
| C. | 與坐標軸上截得不相等的線段 | D. | 在坐標軸上截得相等的線段 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| x | 2 | 4 | 5 | 6 | 8 |
| y | 3 | 4 | 6 | 5 | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com