分析 (Ⅰ)推導(dǎo)出SA⊥AD,SA⊥AB,從而SA⊥平面ABCD,進(jìn)而SA⊥BD,再求出AC⊥BD,由此得到BD⊥平面SAC,從而能證明BD⊥AF.
(Ⅱ)設(shè)點(diǎn)E到平面ABCD的距離為h,由VB-AEC=VE-ABC,且$\frac{{V}_{E-ABC}}{{V}_{S-ABCD}}$=$\frac{2}{5}$,能求出點(diǎn)E到平面ABCD的距離.
解答 證明:(Ⅰ)∵四邊形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,![]()
二面角S-AB-C的大小為90°,
∴SA⊥AD,
又SA⊥AB,AB∩AD=A,∴SA⊥平面ABCD,
又BD?平面ABCD,∴SA⊥BD,
在直角梯形ABCD中,∠BAD=∠ADC=90°,
AD=2CD=1,AB=2,
∴tan∠ABD=tan∠CAD=$\frac{1}{2}$,
又∠DAC+∠BAC=90°,
∴∠ABD+∠BAC=90°,即AC⊥BD,
又AC∩SA=A,∴BD⊥平面SAC,
∵AF?平面SAC,∴BD⊥AF.
解:(Ⅱ)設(shè)點(diǎn)E到平面ABCD的距離為h,
∵VB-AEC=VE-ABC,且$\frac{{V}_{E-ABC}}{{V}_{S-ABCD}}$=$\frac{2}{5}$,
∴$\frac{{V}_{E-ABC}}{{V}_{S-ABCD}}$=$\frac{\frac{1}{3}{S}_{△ABC}•h}{\frac{1}{3}{S}_{梯形ABCD}•SA}$=$\frac{\frac{1}{2}×2×1×h}{\frac{\frac{5}{2}×1}{2}×1}$=$\frac{2}{5}$,
解得h=$\frac{1}{2}$,
∴點(diǎn)E到平面ABCD的距離為$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查線線垂直的證明,考查點(diǎn)到平面的距離的求法,考查等體積法的應(yīng)用,考查推理論證能力、運(yùn)算求解能力、空間思維能力,考查轉(zhuǎn)化化歸思想、數(shù)形結(jié)合思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$ | B. | $[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$ | ||
| C. | $[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$ | D. | $[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{\sqrt{6}}{5}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ | B. | -$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ | C. | -$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$ | D. | $\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com