【題目】已知拋物線
的焦點
到準線距離為
.
(1)若點
,且點
在拋物線
上,求
的最小值;
(2)若過點
的直線
與圓
相切,且與拋物線
有兩個不同交點
,求
的面積.
科目:高中數(shù)學 來源: 題型:
【題目】設P是橢圓
上一點,M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C經過M(1,3),N(4,2),P(1,﹣7)三點,且直線l:x+ay﹣1=0(a
R)是圓C的一條對稱軸,過點A(﹣6,a) 作圓C的一條切線,切點為B,則線段AB的長度為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣bx+lnx,(a,b∈R).
(1)若a=1,b=3,求函數(shù)f(x)的單調增區(qū)間;
(2)若b=0時,不等式f(x)≤0在[1,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)當a=1,b>
時,記函數(shù)f(x)的導函數(shù)f
(x)的兩個零點是x1和x2(x1<x2),求證:f(x1)﹣f(x2)>
﹣3ln2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
和點
,直線
,
的斜率乘積為常數(shù)
,設點
的軌跡為
,下列說法正確的是( )
A.存在非零常數(shù)
,使
上所有點到兩點
,
距離之和為定值
B.存在非零常數(shù)
,使
上所有點到兩點
,
距離之和為定值
C.不存在非零常數(shù)
,使
上所有點到兩點
,
距離之差的絕對值為定值
D.不存在非零常數(shù)
,使
上所有點到兩點
,
距離之差的絕對值為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋擲紅、藍兩顆骰子,當已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率是( 。
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究高中學生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關系,運用2×2列聯(lián)表進行獨立性檢驗,經計算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參照附表,得到的正確的結論是( 。
A. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別有關”
B. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別無關”
C. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別有關”
D. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】教材曾有介紹:圓
上的點
處的切線方程為
我們將其結論推廣:橢圓
的點
處的切線方程為
在解本題時可以直接應用,已知直線
與橢圓E:
有且只有一個公共點.
(1)求
的值;
(2)設O為坐標原點,過橢圓E上的兩點A、B分別作該橢圓的兩條切線
,且
與
交于點M![]()
①設
,直線AB、OM的斜率分別為
,求證:
為定值;
②設
,求△OAB面積的最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com