【題目】已知函數(shù)
的圖象與
軸的交點中,相鄰兩個交點之間的距離為
,且圖象過點![]()
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)將函數(shù)
的圖象向右平移
個單位,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,若關(guān)于
的方程
,在區(qū)間
上有且只有一個實數(shù)解,求實數(shù)
的取值范圍.
【答案】(1)
(2)
(3)
或![]()
【解析】
(1)計算周期
得到
,再代入點
,計算得到答案.
(2)計算
得到答案.
(3)根據(jù)平移和伸縮變換得到
,
,畫出函數(shù)圖像得到答案.
(1)圖象與
軸的交點,相鄰兩個交點之間的距離為
,即
,即
;
∵
,解得
,那么
.
∵
.圖象過點
代入可求得
,
∴解析式
;
(2)
,
是單調(diào)遞增區(qū)間,
即
,解得
,![]()
∴函數(shù)
的單調(diào)遞增區(qū)間為
;
(3)
;將
的圖象向右平移
個單位后,得到
的圖象,再將所得圖象所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到
的圖象,即![]()
∵
,∴![]()
在
上只有一個實數(shù)解,即圖象
與
只有一個交點,
由
的圖象可知:實數(shù)
的取值范圍為
或
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)過原點
作函數(shù)
的切線
,求
的方程;
(Ⅱ)若對于任意
恒成立,試確定實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知拋物線
的焦點曲線
的一個焦點,
為坐標(biāo)原點,點
為拋物線
上任意一點,過點
作
軸的平行線交拋物線的準(zhǔn)線于
,直線
交拋物線于點
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)求證:直線
過定點
,并求出此定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
(2)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
參考公式:
,
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
:
,
:
,動點
分別在直線
,
上移動,
,
是線段
的中點.
(1)求點
的軌跡
的方程;
(2)設(shè)不經(jīng)過坐標(biāo)原點
且斜率為
的直線
交軌跡
于點
,點
滿足
,若點
在軌跡
上,求四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點分別為
,上頂點為
,若直線
的斜率為1,且與橢圓的另一個交點為
,
的周長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點
的直線
(直線
的斜率不為1)與橢圓交于
兩點,點
在點
的上方,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系
的原點為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線
的參數(shù)方程為
(
為參數(shù)),圓
的極坐標(biāo)方程為
.
(1)求直線
的普通方程與圓
的直角坐標(biāo)方程;
(2)設(shè)曲線
與直線
交于
兩點,若
點的直角坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)如圖,在四棱錐
中,
平面
,底面
是菱形,
,
為
與
的交點,
為
上任意一點.
![]()
(1)證明:平面
平面
;
(2)若
平面
,并且二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
,(
為參數(shù)).
(1)將兩曲線化成普通坐標(biāo)方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com