【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且曲線
與
恰有一個公共點.
(Ⅰ)求曲線
的極坐標(biāo)方程;
(Ⅱ)已知曲線
上兩點
,
滿足
,求
面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求
的單調(diào)區(qū)間;
(2)當(dāng)
時,關(guān)于
的不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是梯形,AB∥DC,AD⊥DC,AB=AD=2,DC=3,平面PDC⊥平面ABCD,E在棱PC上且PE=2EC。
![]()
()證明:BE∥平面PAD;
(1)若ΔPDC是正三角形,求三棱錐P-DBE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的離心率為
,
,
,
,
的面積為
.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
上的一點,直線
與
軸交于點
,直線
與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蔬菜批發(fā)市場銷售某種蔬菜,在一個銷售周期內(nèi),每售出1噸該蔬菜獲利500元,未售出的蔬菜低價處理,每噸虧損100元.統(tǒng)計該蔬菜以往100個銷售周期的市場需求量,繪制下圖所示頻率分布直方圖.
![]()
(Ⅰ)求
的值,并求100個銷售周期的平均市場需求量(以各組的區(qū)間中點值代表該組的數(shù)值);
(Ⅱ)若經(jīng)銷商在下個銷售周期購進了190噸該蔬菜,設(shè)
為該銷售周期的利潤(單位:元),
為該銷售周期的市場需求量(單位:噸).求
與
的函數(shù)解析式,并估計銷售的利潤不少于86000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是函數(shù)
的導(dǎo)函數(shù),且
,
,則下列說法正確的是___________.
①
;
②曲線
在
處的切線斜率最;
③函數(shù)
在
存在極大值和極小值;
④
在區(qū)間
上至少有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)
萬件與年促銷費用
萬元,滿足
(
為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2020年該產(chǎn)品的利潤
(萬元)表示為年促銷費用
(萬元)的函數(shù);
(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)
是宜昌市
個普通職工的年收入,設(shè)這
個數(shù)據(jù)的中位數(shù)為
,平均數(shù)為
,方差為
,如果再加上世界首富的年收入
,則這
個數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com