【題目】在直角坐標(biāo)系
中,曲線
,曲線
(
為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求
,
的極坐標(biāo)方程;
(2)射線l的極坐標(biāo)方程為
,若l分別與
,
交于異于極點(diǎn)的
,
兩點(diǎn),求
的最大值.
【答案】(1)
的極坐標(biāo)方程為
,
的極坐標(biāo)方程為
;
(2)
;
【解析】
(1)利用直角坐標(biāo)和極坐標(biāo)相互轉(zhuǎn)化的公式,將曲線
的直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程.先求得曲線
的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.
(2)將射線
的極坐標(biāo)方程分別和
聯(lián)立,求得
和
的表達(dá)式,利用二次函數(shù)的性質(zhì)求得
的最大值,也即求得
的最大值.
(1)
,![]()
故
的極坐標(biāo)方程為
.
而
的直角坐標(biāo)方程為
,即
,
的極坐標(biāo)方程為
.
(2)直線l分別與
,
聯(lián)立得
,則![]()
,則![]()
,
![]()
![]()
由于
,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)
時(shí),
有最大值為
,故
有最大值
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點(diǎn),離心率等于
,該橢圓的一個(gè)長軸端點(diǎn)恰好是拋物線
的焦點(diǎn).
(1)求橢圓
的方程;
(2)已知直線
與橢圓
的兩個(gè)交點(diǎn)記為
、
,其中點(diǎn)
在第一象限,點(diǎn)
、
是橢圓上位于直線
兩側(cè)的動(dòng)點(diǎn).當(dāng)
、
運(yùn)動(dòng)時(shí),滿足
,試問直線
的斜率是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二十四節(jié)氣是中國古代的一種指導(dǎo)農(nóng)事的補(bǔ)充歷法,是我國勞動(dòng)人民長期經(jīng)驗(yàn)的積累成果和智慧的結(jié)晶,被譽(yù)為“中國的第五大發(fā)明”.由于二十四節(jié)氣對古時(shí)候農(nóng)事的進(jìn)行起著非常重要的指導(dǎo)作用,所以勞動(dòng)人民編寫了很多記憶節(jié)氣的歌謠:春雨驚春清谷天,夏滿芒夏暑相連,秋處露秋寒霜降,冬雪雪冬小大寒.《易經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實(shí)測得到的,其他節(jié)氣的晷影是按照等差數(shù)列的規(guī)律計(jì)算出來的,在下表中,冬至的晷影最長為130.0寸,夏至的晷影最短為14.8寸,那么《易經(jīng)》中所記錄的清明的晷影長應(yīng)為( )
![]()
A.77.2寸B.72.4寸C.67.3寸D.62.8寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.(其中
為自然對數(shù)的底數(shù))
(1)若
,且
在![]()
上是增函數(shù),求
的最小值;
(2)設(shè)
,若對任意
、
恒有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)
滿足
,且
時(shí),
,則函數(shù)
的零點(diǎn)個(gè)數(shù)是( )
A. 6個(gè)B. 8個(gè)C. 2個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù)
,若在
上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,某窯洞窗口形狀上部是圓弧
,下部是一個(gè)矩形
,圓弧
所在圓的圓心為O,經(jīng)測量
米,
米,
,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形
,其中E,F在邊
上,G,H在圓弧
上.設(shè)
,矩形
的面積為S.
![]()
![]()
(1)求矩形
的面積S關(guān)于變量
的函數(shù)關(guān)系式;
(2)求
為何值時(shí),矩形
的面積S最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.
(1)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:能否據(jù)此判斷有97.5%的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
不禮讓斑馬線 | 禮讓斑馬線 | 合計(jì) | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
(2)下圖是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為的折線圖:
![]()
請結(jié)合圖形和所給數(shù)據(jù)求違章駕駛員人數(shù)y與月份x之間的回歸直線方程
,并預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù).
附注:參考數(shù)據(jù):
,
.
參考公式:
,
,
(其中
)
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com