【題目】已知平面直角坐標(biāo)系中兩個(gè)定點(diǎn)
,
,如果對(duì)于常數(shù)
,在函數(shù)
,
的圖像上有且只有6個(gè)不同的點(diǎn)
,使得
成立,那么
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
畫(huà)出函數(shù)y=|x+2|+|x﹣2|﹣4在[﹣4,4]的圖象,討論若P在AB上,設(shè)P(x,﹣2x﹣4);若P在BC上,設(shè)P(x,0);若P在CD上,設(shè)P(x,2x﹣4).求得向量PE,PF的坐標(biāo),求得數(shù)量積,由二次函數(shù)的最值的求法,求得取值范圍,討論交點(diǎn)個(gè)數(shù),即可得到所求范圍.
函數(shù)y=|x+2|+|x﹣2|﹣4
,
(1)若P在AB上,設(shè)P(x,﹣2x﹣4),﹣4≤x≤﹣2.
∴
(3﹣x,6+2x),
(﹣3﹣x,6+2x).
∴
x2﹣9+(6+2x)2=5x2+24x+27=
,
∵x∈[﹣4,﹣2],∴
λ≤11.
∴當(dāng)λ
或
時(shí)有一解,當(dāng)
λ≤-1時(shí)有兩解;
(2)若P在BC上,設(shè)P(x,0),﹣2<x≤2.
∴
(3﹣x,2),
(﹣3﹣x,2).
∴
x2﹣9+4=x2﹣5,
∵﹣2<x≤2,∴﹣5≤λ≤﹣1.
∴當(dāng)λ=﹣5或﹣1時(shí)有一解,當(dāng)﹣5<λ<﹣1時(shí)有兩解;
(3)若P在CD上,設(shè)P(x,2x﹣4),2<x≤4.
(3﹣x,6﹣2x),
(﹣3﹣x,6﹣2x),
∴
x2﹣9+(6﹣2x)2=5x2﹣24x+27,
∵2<x≤4,∴
λ≤11.
∴當(dāng)λ
或
時(shí)有一解,當(dāng)
λ<-1時(shí)有兩解;
綜上,可得有且只有6個(gè)不同的點(diǎn)P的情況是
λ<﹣1.
故選:C.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長(zhǎng)為2的菱形,
,
,平面
平面
,點(diǎn)
為棱
的中點(diǎn).
![]()
(Ⅰ)在棱
上是否存在一點(diǎn)
,使得
平面
,并說(shuō)明理由;
(Ⅱ)當(dāng)二面角
的余弦值為
時(shí),求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
的兩個(gè)頂點(diǎn)為
,
,平面內(nèi)P,Q同時(shí)滿足
;
;
.
求頂點(diǎn)A的軌跡E的方程;
過(guò)點(diǎn)
作兩條互相垂直的直線
,
,直線
,
被點(diǎn)A的軌跡E截得的弦分別為
,
,設(shè)弦
,
的中點(diǎn)分別為M,
試問(wèn):直線MN是否恒過(guò)一個(gè)頂點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該頂點(diǎn),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展,
年某網(wǎng)購(gòu)平臺(tái)“雙
”一天的銷售業(yè)績(jī)高達(dá)
億元人民幣,平臺(tái)對(duì)每次成功交易都有針對(duì)商品和快遞是否滿意的評(píng)價(jià)系統(tǒng).從該評(píng)價(jià)系統(tǒng)中選出
次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿意率為
,對(duì)快遞的滿意率為
,其中對(duì)商品和快遞都滿意的交易為
次.
(1)根據(jù)已知條件完成下面的
列聯(lián)表,并回答能否有
的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系”?
對(duì)快遞滿意 | 對(duì)快遞不滿意 | 合計(jì) | |
對(duì)商品滿意 |
| ||
對(duì)商品不滿意 | |||
合計(jì) |
|
(2)為進(jìn)一步提高購(gòu)物者的滿意度,平臺(tái)按分層抽樣方法從中抽取
次交易進(jìn)行問(wèn)卷調(diào)查,詳細(xì)了解滿意與否的具體原因,并在這
次交易中再隨機(jī)抽取
次進(jìn)行電話回訪,聽(tīng)取購(gòu)物者意見(jiàn).求電話回訪的
次交易至少有一次對(duì)商品和快遞都滿意的概率.
附:
(其中
為樣本容量)
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDE中,
,
平面ABC,
,
,F為BC的中點(diǎn),且
.
![]()
(1)求證:
平面ADF;
(2)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部門(mén)在同一上班高峰時(shí)段對(duì)甲、乙兩地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,乘車等待時(shí)間不超過(guò)40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按
分組,制成頻率分布直方圖:
![]()
假設(shè)乘客乘車等待時(shí)間相互獨(dú)立.
(1)在上班高峰時(shí)段,從甲站的乘客中隨機(jī)抽取1人,記為
;從乙站的乘客中隨機(jī)抽取1人,記為
.用頻率估計(jì)概率,求“乘客
,
乘車等待時(shí)間都小于20分鐘”的概率;
(2)從上班高峰時(shí)段,從乙站乘車的乘客中隨機(jī)抽取3人,
表示乘車等待時(shí)間小于20分鐘的人數(shù),用頻率估計(jì)概率,求隨機(jī)變量
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,直線
,若直線
上存在點(diǎn)
,過(guò)點(diǎn)
引圓的兩條切線
,使得
,則實(shí)數(shù)
的取值范圍是( )
A.
B. [
,
]
C.
D.
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
滿足
對(duì)任意的
恒成立,
為其前
項(xiàng)的和,且
.
(1)求數(shù)列
的通項(xiàng)
;
(2)數(shù)列
滿足
,其中
.
①證明:數(shù)列
為等比數(shù)列;
②求集合
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com