給出下列各函數(shù)值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④
,其中符號(hào)為負(fù)的是( )
A.① B.②
C.③ D.④
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
執(zhí)行如圖所示的程序框圖,若輸入如下四個(gè)函數(shù):
①y=2x; ②y=-2x;、f(x)=x+x-1;④f(x)=x-x-1.
則輸出函數(shù)的序號(hào)為( )
![]()
A.① B.②
C.③ D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=(x2-ax)ex(x∈R),a為實(shí)數(shù).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f(x)在閉區(qū)間[-1,1]上為減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱f(x)在區(qū)間D上存在“次不動(dòng)點(diǎn)”,若函數(shù)f(x)=ax2-3x-a+
在區(qū)間[1,4]上存在“次不動(dòng)點(diǎn)”,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,0) B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為
,求函數(shù)g(x)的解析式;
(2)在(1)的條件下,求函數(shù)y=g(x)的圖像在點(diǎn)P(-1,1)處的切線方程;
(3)若不等式2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知sin α<0,tan α>0.
(1)求α角的集合;
(2)求
終邊所在的象限;
(3)試判斷tan
sin
cos
的符號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=![]()
(1)求y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若函數(shù)y=g(x)與y=f(x)的圖像關(guān)于直線x=2對(duì)稱,求當(dāng)x∈[0,1]時(shí),函數(shù)y=g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在三棱錐
中,
底面
,
,
為
的中點(diǎn),
為
的中點(diǎn),
,
.
(Ⅰ)求證:
平面
;
(Ⅱ)求
與平面
成角的正弦值;
(Ⅲ)設(shè)點(diǎn)
在線段
上,且
,
平面
,
求實(shí)數(shù)
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com