【題目】某中學(xué)舉行一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為
分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問(wèn)題:
(Ⅰ)寫(xiě)出
,
,
,
的值.
(Ⅱ)在選取的樣本中,從競(jìng)賽成績(jī)是
分以上(含
分)的同學(xué)中隨機(jī)抽取
名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng),求所抽取的
名同學(xué)來(lái)自同一組的概率.
(Ⅲ)在(Ⅱ)的條件下,設(shè)
表示所抽取的
名同學(xué)中來(lái)自第
組的人數(shù),求
的分布列及其數(shù)學(xué)期望.
組別 | 分組 | 頻數(shù) | 頻率 |
第 |
|
|
|
第 |
|
|
|
第 |
|
|
|
第 |
|
|
|
第 |
|
|
|
合計(jì) |
|
|
![]()
【答案】(
)
,
,
,
.(
)
.(
)見(jiàn)解析.
【解析】試題分析:利用頻率=
,以及
表示頻率分布直方圖的縱坐標(biāo)即可求出a,b,x,y;
(2)由(1)可知第四組的人數(shù),已知第五組的人數(shù)是2,利用組合的計(jì)算公式即可求出從這6人中任選2人的種數(shù),再分兩類分別求出所選的兩人來(lái)自同一組的情況,利用互斥事件的概率和古典概型的概率計(jì)算公式即可得出;
(3)由(2)可知,ξ的可能取值為0,1,2,再利用組合的計(jì)算公式及古典概型的計(jì)算公式、數(shù)學(xué)期望的計(jì)算公式即可得出.
試題解析:(
)由題意可知
,
,
,
.
(
)由題意可知,第
組有
人,第
組有
人,共
人.從競(jìng)賽成績(jī)是
分以上(含
分)的同學(xué)中隨機(jī)抽取
名同學(xué)有
種情況.
設(shè)事件
:隨機(jī)抽取的
名同學(xué)來(lái)自同一組,則
.
故隨機(jī)抽取的
名同學(xué)來(lái)自同一組的概率是
.
(
)由(
)可知,
的可能的值為
,
,
,則:
,
,
.
所以,
的分布列為:
|
|
|
|
|
|
|
|
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系
中,橢圓
:
的長(zhǎng)軸長(zhǎng)為4,離心率為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)
作一條不與坐標(biāo)軸平行的直線
,若
交橢圓
與
、
兩點(diǎn),點(diǎn)
關(guān)于原點(diǎn)
的對(duì)稱點(diǎn)為
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(Ⅰ)若
,求
的極小值;
(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)常數(shù)
和
,使得
和
?若存在,求出
和
的值.若不存在,說(shuō)明理由;
(Ⅲ)設(shè)
有兩個(gè)零點(diǎn)
,且
成等差數(shù)列,試探究
值的符號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(
)若曲線
與直線
相切于點(diǎn)
,求點(diǎn)
的坐標(biāo).
(
)令
,當(dāng)
時(shí),求
的單調(diào)區(qū)間.
(
)當(dāng)
,證明:當(dāng)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知短軸長(zhǎng)為2的橢圓
,直線
的橫、縱截距分別為
,且原點(diǎn)到直線
的距離為
.
(1)求橢圓
的方程;
(2)直線
經(jīng)過(guò)橢圓的右焦點(diǎn)
且與橢圓
交于
兩點(diǎn),若橢圓
上存在一點(diǎn)
滿足
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月10日,我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海撥高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為
,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)
的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí),若
,則長(zhǎng)勢(shì)為一級(jí);若
,則長(zhǎng)勢(shì)為二極;若
,則長(zhǎng)勢(shì)為三級(jí),為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:
種植地編號(hào) |
|
|
|
|
|
|
|
|
|
|
|
種植地編號(hào) |
|
|
|
|
|
|
|
|
|
|
|
(1)若該地有青蒿人工種植地180個(gè),試估計(jì)該地中長(zhǎng)勢(shì)等級(jí)為三級(jí)的個(gè)數(shù);
(2)從長(zhǎng)勢(shì)等級(jí)為一級(jí)的青蒿人工種植地中隨機(jī)抽取兩個(gè),求這兩個(gè)人工種植地的綜合指標(biāo)
均為4個(gè)概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)若
,都有
,求實(shí)數(shù)
的取值范圍;
(3)證明:
且
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(I)若函數(shù)
處取得極值,求實(shí)數(shù)
的值;并求此時(shí)
上的最大值;
(Ⅱ)若函數(shù)
不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
(
)的離心率為
,點(diǎn)
在橢圓
上,直線
過(guò)橢圓的右焦點(diǎn)
且與橢圓相交于
兩點(diǎn).
(1)求
的方程;
(2)在
軸上是否存在定點(diǎn)
,使得
為定值?若存在,求出定點(diǎn)
的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com