【題目】已知
是雙曲線
的兩個(gè)焦點(diǎn),圓
與雙曲線
位于
軸上方的兩個(gè)交點(diǎn)分別為
,若
,則雙曲線
的離心率為_______.
【答案】![]()
【解析】
連接NF1,MF2,由雙曲線的定義,可得|NF1|=2a+2c,|MF1|=2c﹣2a,
在△MF1F2中,和△NF1F2中,表示出cos∠MF1F2, cos∠NF2F1
由
,可得∠MF1F2+∠NF2F1=π,即有cos∠MF1F2+cos∠NF2F1=0,化簡(jiǎn)整理,由離心率公式計(jì)算即可得到所求值.
如圖:
![]()
連接NF1,MF2,
由雙曲線的定義,可得|MF2|﹣|MF1|=2a,
|NF1|﹣|NF2|=2a,
由|MF2|=|NF2|=2c,
可得|NF1|=2a+2c,|MF1|=2c﹣2a,
在等腰△MF1F2中,可得cos∠MF1F2
,
在△NF1F2中,可得cos∠NF2F1
,
由
,可得∠MF1F2+∠NF2F1=π,即有cos∠MF1F2+cos∠NF2F1=0,
可得
0,
化為2c2﹣3ac﹣a2=0,
得2e2﹣3e﹣1=0,解得e
或e
(舍去),
故答案為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2014·江蘇卷)如圖,在平面直角坐標(biāo)系xOy中,F1,F2分別是橢圓
(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長(zhǎng)交橢圓于點(diǎn)A,過點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C.
![]()
(1)若點(diǎn)C的坐標(biāo)為
,且BF2=
,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,現(xiàn)以極點(diǎn)
為原點(diǎn),極軸為
軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)求直線
的直角坐標(biāo)方程和曲線
的普通方程;
(2)若曲線
為曲線
關(guān)于直線
的對(duì)稱曲線,點(diǎn)
分別為曲線
、曲線
上的動(dòng)點(diǎn),點(diǎn)
坐標(biāo)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
,點(diǎn)
為橢圓外一點(diǎn),過點(diǎn)
向橢圓作兩條切線,當(dāng)兩條切線相互垂直時(shí),點(diǎn)
在一個(gè)定圓上運(yùn)動(dòng),則該定圓的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
是過點(diǎn)
,傾斜角為
的直線,以直角坐標(biāo)系
的原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(Ⅰ)求曲線
的普通方程和曲線
的一個(gè)參數(shù)方程;
(Ⅱ)曲線
與曲線
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將
這9個(gè)正整數(shù)分別寫在三張卡片上,要求每一張卡片上的任意兩數(shù)之差都不在這張卡片上,現(xiàn)在第一張卡片上已經(jīng)寫有
和
,第二張卡片上寫有
,第三張卡片上寫有
,則
應(yīng)該寫在第__________張卡片上;第三張卡片上的所有書組成的集合是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是AC的中點(diǎn),四邊形BDEF是菱形,平面
平面ABC,
,
,
.
![]()
若點(diǎn)M是線段BF的中點(diǎn),證明:
平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
在區(qū)間
上的最大值是
最小值是
則![]()
A. 與
有關(guān),且與
有關(guān) B. 與
有關(guān),但與
無關(guān)
C. 與
無關(guān),且與
無關(guān) D. 與
無關(guān),但與
有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,曲線
在點(diǎn)
處的切線與直線
垂直.
注:
為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(2)求證:當(dāng)
時(shí),
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com