【題目】過拋物線
的焦點作直線交拋物線于
,
兩點,若
,則
的值為( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】
根據(jù)過拋物線焦點的弦長公式,利用題目所給已知條件,求得弦長
.
根據(jù)過拋物線焦點的弦長公式有
.故選B.
【點睛】
本小題主要考查過拋物線焦點的弦長公式,即
.要注意只有過拋物線焦點的弦長才可以使用.屬于基礎題.
【題型】單選題
【結(jié)束】
10
【題目】已知橢圓
:
的右頂點、上頂點分別為
、
,坐標原點到直線
的距離為
,且
,則橢圓
的方程為( )
A.
B.
C.
D. ![]()
科目:高中數(shù)學 來源: 題型:
【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的面積為200平方米的十字型地域.現(xiàn)計劃在正方形MNPQ上建花壇,造價為4200元/平方米,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/平方米,再在四個空角上鋪草坪,造價為80元/平方米.
![]()
(1)設總造價為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關于x的函數(shù)關系式;
(2)計劃至少要投入多少元,才能建造這個休閑小區(qū).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
恒成立,試確定實數(shù)
的取值范圍;
(3)證明
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)=(a-x)|x|,常數(shù)a∈R,且關于x的不等式mx2+m>f[f(x)]對所有的x∈[-2,2]恒成立,則實數(shù)m的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
為奇函數(shù).
(1)求a的值,并證明
是R上的增函數(shù);
(2)若關于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,
,且
時
,數(shù)列
滿足
,
,對任意
,都有
.
(1)求數(shù)列
,
的通項公式;
(2)令
若對任意的
,不等式
恒成立,試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是橢圓
上一動點,
為坐標原點,則線段
中點
的軌跡方程為_______.
【答案】![]()
【解析】
設出
點的坐標,由此得到
點的坐標,將
點坐標代入橢圓方程,化簡后可得
點的軌跡方程.
設
,由于
是
中點,故
,代入橢圓方程得
,化簡得
.即
點的軌跡方程為
.
【點睛】
本小題主要考查代入法求動點的軌跡方程,考查中點坐標,屬于基礎題.
【題型】填空題
【結(jié)束】
15
【題目】設
是雙曲線
:
的右焦點,
是
左支上的點,已知
,則
周長的最小值是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點P到定點
的距離比它到直線
的距離小2,設動點P的軌跡為曲線C.
求曲線C的方程;
若直線
與曲線C和圓
從左至右的交點依次為A,B,C,D求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
與直線
相切,設點
為圓上一動點,
軸于
,且動點
滿足
,設動點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)直線
與直線
垂直且與曲線
交于
兩點,求
面積的最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com