【題目】下列命題:①“
”是“存在
,使得
成立”的充分不必要條件;②“
”是“存在
,使得
成立”的必要條件;③“
”是“不等式
對(duì)一切
恒成立”的充要條件. 其中所以真命題的序號(hào)是
A.③B.②③C.①②D.①③
【答案】B
【解析】
選項(xiàng)①當(dāng)
時(shí),必存在n∈N*,使得
成立,故前者是后者的充分條件,
但存在n∈N*,使得
成立時(shí),a即為
當(dāng)n∈N*,時(shí)的取值范圍,即
,故“
”應(yīng)是“存在n∈N*,使得
成立”的充要條件,故①錯(cuò)誤;
選項(xiàng)②當(dāng)存在n∈N*,使得
成立時(shí),a只需大于
當(dāng)n∈N*,時(shí)的最小取值即可,故可得a>0,故“a>0”是“存在n∈N*,使得
成立”的必要條件,故②正確;
選項(xiàng)③由①知,當(dāng)n∈N*時(shí)
的取值范圍為
,故當(dāng)
時(shí),必有“不等式
對(duì)一切n∈N*恒成立”,而要使不等式
對(duì)一切n∈N*恒成立”,只需a大于
的最大值即可,即a
故“
”是“不等式
對(duì)一切n∈N*恒成立”的充要條件,③正確.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
是
的極大值點(diǎn),求
的取值范圍;
(2)當(dāng)
,
時(shí),方程
(其中
)有唯一實(shí)數(shù)解,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點(diǎn)M為線段PA的中點(diǎn),求直線PB與平面AMN所成角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+
﹣1,a∈R.
(1)當(dāng)a>0時(shí),若函數(shù)f(x)在區(qū)間[1,3]上的最小值為
,求a的值;
(2)討論函數(shù)g(x)=f′(x)﹣
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,及圓
.
(1)求過
點(diǎn)的圓的切線方程;
(2)若過
點(diǎn)的直線與圓相交,截得的弦長(zhǎng)為
,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的
切直線MN于點(diǎn)P,射線PK從PN出發(fā)繞點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)到PM,旋轉(zhuǎn)過程中,PK交
于點(diǎn)Q,設(shè)
為x,弓形PmQ的面積為
,那么
的圖象大致是
![]()
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
個(gè)正數(shù)
依次圍成一個(gè)圓圈,其中![]()
是公差為
的等差數(shù)列,而
是公比為
的等比數(shù)列.
(1)若
,求數(shù)列
的所有項(xiàng)的和
;
(2)若
,求
的最大值;
(3)當(dāng)
時(shí)是否存在正整數(shù)
,滿足
?若存在,求出
值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長(zhǎng)為4的菱形
中,
,
于點(diǎn)
,將
沿
折起到
的位置,使
,如圖2.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)判斷在線段
上是否存在一點(diǎn)
,使平面
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將
個(gè)不同的紅球和
個(gè)不同的白球,放入同一個(gè)袋中,現(xiàn)從中取出
個(gè)球.
(1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少種不同的取法;
(2)取出一個(gè)紅球記
分,取出一個(gè)白球記
分,若取出
個(gè)球的總分不少于
分,則有多少種不同的取法;
(3)若將取出的
個(gè)球放入一箱子中,記“從箱子中任意取出
個(gè)球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到
個(gè)紅球并且恰有一次取到
個(gè)白球的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com