【題目】同時拋擲1角、5角和1元的三枚硬幣,計算:
(1)恰有一枚出現(xiàn)正面的概率;
(2)至少有兩枚出現(xiàn)正面的概率.
【答案】(1)
(2) ![]()
【解析】
(1)用枚舉法列出可能出現(xiàn)的情況,然后求出結(jié)果
(2)至少有兩枚出現(xiàn)正面包括兩枚正面和三枚正面的情況,找出滿足條件的可能性求出結(jié)果
解:基本事件有(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反),共8個.
(1)用A表示“恰有一枚出現(xiàn)正面”這一事件:
則A={(正,反,反),(反,反,正),(反,正,反)}.
因此
.
(2)用B表示“至少有兩枚出現(xiàn)正面”這一事件,
則B={(正,正,反),(正,反,正),(反,正,正),(正,正,正)},
因此
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,側(cè)棱
底面
,
為棱
中點(diǎn).
,
,
.
![]()
(I)求證:
平面
.
(II)求證:
平面
.
(III)在棱
的上是否存在點(diǎn)
,使得平面
平面
?如果存在,求此時
的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=Acos(ωx+φ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移
個單位長度后得到函數(shù)f(x)的圖象.求:
![]()
(1)函數(shù)f(x)在
上的值域;
(2)使f(x)≥2成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的焦點(diǎn)為(
,0),(
,0),且橢圓C過點(diǎn)M(4,1),直線l:
不過點(diǎn)M,且與橢圓交于不同的兩點(diǎn)A,B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:直線MA,MB與x軸總圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
為偶函數(shù),求
的值并寫出
的增區(qū)間;
(Ⅱ)若關(guān)于
的不等式
的解集為
,當(dāng)
時,求
的最小值;
(Ⅲ)對任意的
,
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)F與拋物線
焦點(diǎn)重合,且橢圓的離心率為
,過
軸正半軸一點(diǎn)
且斜率為
的直線
交橢圓于
兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在實數(shù)
使以線段
為直徑的圓經(jīng)過點(diǎn)
,若存在,求出實數(shù)
的值;若不存在說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
![]()
記x表示1臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),
表示購機(jī)的同時購買的易損零件數(shù).
(Ⅰ)若
=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于
”的頻率不小于0.5,求
的最小值;
(Ⅲ)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買19個還是20個易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入n,x的值分別為4,2,則輸出v的值為 ( )
![]()
A. 9B. 18C. 25D. 50
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com