【題目】已知m∈R,命題p:對任意x∈[0,1],不等式x2﹣2x﹣1≥m2﹣3m恒成立,命題q:存在x∈[﹣1,1],使得m≤2x﹣1;
(Ⅰ)若命題p為真命題,求m的取值范圍;
(Ⅱ)若命題q為假命題,求m的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品
件,產(chǎn)品尺寸(單位:
)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 |
|
|
|
|
|
|
|
頻數(shù) |
|
|
|
|
|
|
|
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在
的概率;
(2)求這
件產(chǎn)品尺寸的樣本平均數(shù)
;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(3)根據(jù)頻數(shù)分布對應的直方圖,可以認為這種產(chǎn)品尺寸
服從正態(tài)分布
,其中
近似為樣本平均值
,
近似為樣本方差
,經(jīng)過計算得
,利用該正態(tài)分布,求
.
附:①若隨機變量
服從正態(tài)分布
,則
,
;②
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當
時,求
的單調區(qū)間;
(Ⅱ)若函數(shù)
與
圖象在
上有兩個不同的交點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在極坐標系中,點
,
,
是線段
的中點,以極點為原點,極軸為
軸的正半軸,并在兩坐標系中取相同的長度單位,建立平面直角坐標系,曲線
的參數(shù)方程是
(
為參數(shù)).
(1)求點
的直角坐標,并求曲線
的普通方程;
(2)設直線
過點
交曲線
于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知梯形
如圖(1)所示,其中
,
,四邊形
是邊長為
的正方形,現(xiàn)沿
進行折疊,使得平面
平面
,得到如圖(2)所示的幾何體.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)已知點
在線段
上,且
平面
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就某地居民的月收入調查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,每個分組包括左端點,不包括右端點,如第一組表示收入在
.
![]()
(1)求居民收入在
的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)、平均數(shù)及其眾數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,從這10000人中用分層抽樣方法抽出100人作進一步分析,則應月收入為
的人中抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)g(x)=ax2+c(a,c∈R),g(1)=1且不等式g(x)≤x2﹣x+1對一切實數(shù)x恒成立.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下,設函數(shù)h(x)=2g(x)﹣2,關于x的不等式h(x﹣1)+4h(m)≤h(
)﹣4m2h(x),在x∈[
,+∞)有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2-(2m+1)x+m.
(1)若方程f(x)=0有兩個不等的實根x1,x2,且-1<x1<0<x2<1,求m的取值范圍;
(2)若對任意的x∈[1,2],
≤2恒成立,求m的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com