分析 (I)先利用二倍角公式、輔助角公式對已知函數(shù)進行化簡可得,f(x)=2asin(2x+$\frac{π}{6}$)+a+b,結(jié)合正弦函數(shù)的性質(zhì)即可求解;
(II)由x的范圍先求2x$+\frac{π}{6}$,然后求解sin(2x$+\frac{π}{6}$)的范圍,分a>0,當a<0兩種情況求解函數(shù)的值域,即可求a,b.
解答 解:(I)∵f(x)=2$\sqrt{3}$asinxcosx+2acos2x+b,
=$\sqrt{3}$asin2x+a(1+cos2x)+b,
=$\sqrt{3}$asin2x+acos2x+a+b,
=2asin(2x+$\frac{π}{6}$)+a+b(3分),
由2x+$\frac{π}{6}=\frac{π}{2}+kπ(,k∈Z)$可得函數(shù)f(x)的對稱軸方程是x=$\frac{π}{6}+\frac{kπ}{2}(k∈Z)$(5分).
(II)∵x∈[0,$\frac{π}{4}$],
∴2x$+\frac{π}{6}$∈[$\frac{π}{6},\frac{2π}{3}$],
∴sin(2x$+\frac{π}{6}$)∈[$\frac{1}{2},1$](6分),
①當a>0時,f(x)∈{2a+b,3a+b],根據(jù)題意知$\left\{\begin{array}{l}{2a+b=1}\\{3a+b=2}\end{array}\right.$,解可得$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$(9分),
②當a<0時,f(x)∈{3a+2b,2a+b],根據(jù)題意知$\left\{\begin{array}{l}{3a+b=1}\\{2a+b=2}\end{array}\right.$,解可得$\left\{\begin{array}{l}{a=-1}\\{b=4}\end{array}\right.$(11分),
綜上,所求的a,b的值為$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.或\left\{\begin{array}{l}{a=-1}\\{b=4}\end{array}\right.$(12分).
點評 本題主要考查了正弦函數(shù)的圖象及性質(zhì)、輔助角公式、二倍角公式的應用,解題中要注意分類討論思想的應用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 8 | B. | 15 | C. | 16 | D. | 32 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com