分析 運(yùn)用同角的平方關(guān)系和平方差公式、立方差公式,化簡(jiǎn)整理,再分子分母同除以cos2α,再轉(zhuǎn)化為關(guān)于tanx的二次方程,由判別式非負(fù),解不等式即可得到函數(shù)的最值.
解答 解:y=f(x)=$\frac{co{s}^{5}x-cosxsi{n}^{4}x}{co{s}^{3}x-si{n}^{3}x}$=$\frac{cosx(co{s}^{4}x-si{n}^{4}x)}{(cosx-sinx)(co{s}^{2}x+cosxsinx+si{n}^{2}x)}$
=$\frac{cosx(co{s}^{2}x-si{n}^{2}x)(co{s}^{2}x+si{n}^{2}x)}{(cosx-sinx)(co{s}^{2}x+cosxsinx+si{n}^{2}x)}$
=$\frac{co{s}^{2}x+cosxsinx}{co{s}^{2}x+cosxsinx+si{n}^{2}x}$=$\frac{1+tanx}{1+tanx+ta{n}^{2}x}$(tanx≠1),
可得ytan2x+(y-1)tanx+y-1=0,
由判別式△≥0,即(y-1)2-4y(y-1)≥0,
解得-$\frac{1}{3}$≤y≤1.
則當(dāng)tanx=-2時(shí),f(x)取得最小值-$\frac{1}{3}$;
當(dāng)tanx=0時(shí),f(x)取得最大值1.
點(diǎn)評(píng) 本題考查三角函數(shù)的最值的求法,注意運(yùn)用同角的平方關(guān)系和商數(shù)關(guān)系化簡(jiǎn)整理,結(jié)合二次方程判別式非負(fù),考查運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 單調(diào)遞增 | B. | 單調(diào)遞減 | C. | 先增后減 | D. | 先減后增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com