已知函數(shù)
,且
.
(1)判斷
的奇偶性并說(shuō)明理由;
(2)判斷
在區(qū)間
上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意實(shí)數(shù)
,有
成立,求
的最小值.
(1)
是奇函數(shù);(2)
在區(qū)間
上單調(diào)遞增;(3)
.
解析試題分析:(1)由條件
可求得函數(shù)解析式中的
值,從而求出函數(shù)的解析式,求出函數(shù)的定義域并判斷其是否關(guān)于原點(diǎn)對(duì)稱(這一步很容易被忽略),再通過(guò)計(jì)算
,與
進(jìn)行比較解析式之間的正負(fù),從而判斷
的奇偶性;(2)由(1)可知函數(shù)的解析式,根據(jù)函數(shù)單調(diào)性的定義法進(jìn)行判斷求解,(常用的定義法步驟:取值;作差;整理;判斷;結(jié)論);(3)綜合(1)(2),根據(jù)函數(shù)的奇偶性、單調(diào)性,以及自變量
的范圍,分別求出函數(shù)在
最大、最小值,從而得出式子
最大值,求出實(shí)數(shù)
的最小值.
試題解析:(1)
即
![]()
函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/9/nhz3d.png" style="vertical-align:middle;" />關(guān)于原點(diǎn)對(duì)稱![]()
是奇函數(shù) 4分
(2)任取![]()
則![]()
在區(qū)間
上單調(diào)遞增 8分
(3)依題意只需![]()
又![]()
12分
考點(diǎn):1.函數(shù)的概念、奇偶性、單調(diào)性、最值;2.不等式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(
),其中
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
的極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
其中
為自然對(duì)數(shù)的底數(shù),
.
(1)設(shè)
,求函數(shù)
的最值;
(2)若對(duì)于任意的
,都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若對(duì)一切
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若函數(shù)
在定義域內(nèi)為增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若
,
的三個(gè)頂點(diǎn)
在函數(shù)
的圖象上,且
,
、
、
分別為
的內(nèi)角A、B、C所對(duì)的邊。求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)![]()
(Ⅰ)設(shè)
,
,證明:
在區(qū)間
內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè)
,若對(duì)任意![]()
,有
,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù):![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若對(duì)于任意的
,若函數(shù)
在 區(qū)間
上有最值,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
。
(1)如果
,求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(3)證明:當(dāng)
時(shí),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
和
是函數(shù)
的兩個(gè)極值點(diǎn),其中
,
.
(1)求
的取值范圍;
(2)若
,求
的最大值.注:e是自然對(duì)數(shù)的底.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com