【題目】某小學(xué)為了解本校某年級女生的身高情況,從本校該年級的學(xué)生中隨機(jī)選出100名女生并統(tǒng)計(jì)她們的身高(單位:
),得到如圖頻率分布表:
分組(身高) |
|
|
|
|
(Ⅰ)用分層抽樣的方法從身高在
和
的女生中共抽取6人,則身高在
的女生應(yīng)抽取幾人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再隨機(jī)抽取2人,求這2人身高都在
內(nèi)的概率.
【答案】(Ⅰ)4(Ⅱ)![]()
【解析】試題分析: (Ⅰ)根據(jù)分層抽樣按比例抽取即可; (Ⅱ)在(Ⅰ)中抽取的6名女生中,有4人身高在
中,2人身高在
中,從這6人中隨機(jī)抽取2人,基本事件共有15個(gè), 其中2人身高都在
內(nèi)的情況有6種,根據(jù)古典概型的公式計(jì)算即可.
試題解析:(Ⅰ)身高在
內(nèi)的女生應(yīng)該抽取
人.
(Ⅱ)在(Ⅰ)中抽取的6名女生中,有4人身高在
中,2人身高在
中,記身高在
中的4人分別為
,
,
,
,身高在
中的2人分別為
,
.從這6人中隨機(jī)抽取2人,基本事件包含
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共有15個(gè)基本事件.
其中2人身高都在
內(nèi)的情況有6種,
則2人身高都在
內(nèi)的概率為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)要抽查某企業(yè)生產(chǎn)的某種品牌的袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從700袋牛奶中抽取50袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),先將700袋牛奶按001,002,…,700進(jìn)行編號,如果從隨機(jī)數(shù)表第3行第1組開始向右讀,最先讀到的5袋牛奶的編號是614,593,379,242,203,請你以此方式繼續(xù)向右讀數(shù),隨后讀出的3袋牛奶的編號是________.(下列摘取了隨機(jī)數(shù)表第1行至第5行)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),
軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長度.已知過點(diǎn)P(1,1)的直線
的參數(shù)方程是![]()
(I)寫出直線
的極坐標(biāo)方程;
(II)設(shè)
與圓
相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一戶居民根據(jù)以往的月用電量情況,繪制了月用電量的頻率分布直方圖(月用電量都在25度到325度之間)如圖所示.將月用電量落入該區(qū)間的頻率作為概率.若每月的用電量在200度以內(nèi)(含200度),則每度電價(jià)0.5元,若每月的用電量超過200度,則超過的部分每度電價(jià)0.6元.記
(單位:度,
)為該用戶下個(gè)月的用電量,
(單位:元)為下個(gè)月所繳納的電費(fèi).
![]()
(1)估計(jì)該用戶的月用電量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)將
表示為
的函數(shù);
(3)根據(jù)直方圖估計(jì)下個(gè)月所繳納的電費(fèi)
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C對邊分別為a,b,c,已知A=60°,a=
,sinB+sinC=6
sinBsinC,則△ABC的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
有甲、乙、丙、丁四名網(wǎng)球運(yùn)動(dòng)員,通過對過去戰(zhàn)績的統(tǒng)計(jì),在一場比賽中,甲對乙、丙、丁取勝的概率分別為
.
(Ⅰ)若甲和乙之間進(jìn)行三場比賽,求甲恰好勝兩場的概率;
(Ⅱ)若四名運(yùn)動(dòng)員每兩人之間進(jìn)行一場比賽,設(shè)甲獲勝場次為
,求隨機(jī)變量
的分布列及期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
經(jīng)過點(diǎn)
,一個(gè)焦點(diǎn)是
.
(1)求橢圓
的方程;
(2)若傾斜角為
的直線
與橢圓
交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的離心率為
,
分別是它的左、右焦點(diǎn),且存在直線
,使
關(guān)于
的對稱點(diǎn)恰好是圓
(
)的一條直線的兩個(gè)端點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)直線
與拋物線
(
)相交于
兩點(diǎn),射線
,
與橢圓
分別相交于點(diǎn)
,試探究:是否存在數(shù)集
,當(dāng)且僅當(dāng)
時(shí),總存在
,使點(diǎn)
在以線段
為直徑的圓內(nèi)?若存在,求出數(shù)集
;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com