【題目】已知函數(shù)
(
).
(1)若不等式
的解集為
,求
的取值范圍;
(2)當(dāng)
時(shí),解不等式
;
(3)若不等式
的解集為
,若
,求
的取值范圍.
【答案】(1)
;(2)
.;(3)
.
【解析】試題分析:(1)對(duì)二項(xiàng)式系數(shù)進(jìn)行討論,可得
求出解集即可;(2)分為
,
,
分別解出3種情形對(duì)應(yīng)的不等式即可;(3)將問(wèn)題轉(zhuǎn)化為對(duì)任意的
,不等式
恒成立,利用分離參數(shù)的思想得
恒成立,求出其最大值即可.
試題解析:(1)①當(dāng)
即
時(shí),
,不合題意;
②當(dāng)
即
時(shí),
,即
,
∴
,∴
(2)
即![]()
即![]()
①當(dāng)
即
時(shí),解集為
②當(dāng)
即
時(shí), ![]()
∵
,∴解集為
③當(dāng)
即
時(shí), ![]()
∵
,所以
,所以![]()
∴解集為
(3)不等式
的解集為
,
,
即對(duì)任意的
,不等式
恒成立,
即
恒成立,
因?yàn)?/span>
恒成立,所以
恒成立,
設(shè)
則
,
,
所以
,
因?yàn)?/span>
,當(dāng)且僅當(dāng)
時(shí)取等號(hào),
所以
,當(dāng)且僅當(dāng)
時(shí)取等號(hào),
所以當(dāng)
時(shí),
,
所以![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水庫(kù)年入流量
(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和,單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過(guò)120的年份有35年,超過(guò)120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.
(Ⅰ)求在未來(lái)4年中,至多1年的年入流量超過(guò)120的概率;
(Ⅱ)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量
限制,并有如下關(guān)系;
年入流量 |
|
|
|
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)發(fā)電機(jī)年利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)發(fā)電機(jī)年虧損800萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(jī)(得分均為整數(shù),滿(mǎn)分100分)進(jìn)行統(tǒng)計(jì)制表,其中成績(jī)不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問(wèn)題.
分組 | 頻數(shù) | 頻率 |
| 5 |
|
|
|
|
| 35 |
|
| 25 |
|
| 15 |
|
合計(jì) | 100 |
|
(Ⅰ)求
的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;
(Ⅱ)按成績(jī)采用分層抽樣抽取20人參加學(xué)校的“我愛(ài)國(guó)學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);
(Ⅲ)在第(Ⅱ)問(wèn)抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績(jī)在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c是兩兩不等的實(shí)數(shù),則p=a2+b2+c2與q=ab+bc+ca的大小關(guān)系是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200
,圓心角為
的扇形廣場(chǎng)內(nèi)(如圖所示),沿△
邊界修建觀光道路,其中
、
分別在線(xiàn)段
、
上,且
、
兩點(diǎn)間距離為定長(zhǎng)
.
![]()
(1)當(dāng)
時(shí),求觀光道
段的長(zhǎng)度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長(zhǎng)度,試確定圖中
、
兩點(diǎn)的位置,使觀光道路總長(zhǎng)度達(dá)到最長(zhǎng)?并求出總長(zhǎng)度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為加強(qiáng)學(xué)生的交通安全教育,對(duì)學(xué)校旁邊
,
兩個(gè)路口進(jìn)行了8天的檢測(cè)調(diào)查,得到每天各路口不按交通規(guī)則過(guò)馬路的學(xué)生人數(shù)(如莖葉圖所示),且
路口數(shù)據(jù)的平均數(shù)比
路口數(shù)據(jù)的平均數(shù)小2.
![]()
(1)求出
路口8個(gè)數(shù)據(jù)中的中位數(shù)和莖葉圖中
的值;
(2)在
路口的數(shù)據(jù)中任取大于35的2個(gè)數(shù)據(jù),求所抽取的兩個(gè)數(shù)據(jù)中至少有一個(gè)不小于40的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+2
sin2ωx﹣
(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個(gè)零點(diǎn),求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為平行四邊形ABCD所在平面外一點(diǎn),MN分別為ABPC的中點(diǎn),平面PAD∩平面PBC=l.
(1)判斷BC與l的位置關(guān)系,并證明你的結(jié)論;
(2)判斷MN與平面PAD的位置關(guān)系,并證明你的結(jié)論.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直三棱柱
中,
,
,
是棱
上的一點(diǎn),
分別為
的中點(diǎn).
![]()
(1)求證:
∥平面
;
(2)當(dāng)
為
的中點(diǎn)時(shí),求三棱錐
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com