【題目】已知橢圓C:
的離心率為
,橢圓C的四個(gè)頂點(diǎn)圍成的四邊形的面積為
.
求橢圓C的方程;
直線l與橢圓C交于
,
兩個(gè)不同點(diǎn),O為坐標(biāo)原點(diǎn),若
的面積為
,證明:
為定值.
【答案】(1)
(2)見(jiàn)解析
【解析】
由離心率為
,
,
,由
,解得:
,
,即可求得橢圓C的方程;
直線l的斜率不存在時(shí),P,Q兩點(diǎn)關(guān)于x軸對(duì)稱,
,
,由三角形面積公式即可求得
和
的值,可得
的值,當(dāng)直線斜率存在,設(shè)出直線方程
代入橢圓方程,利用
及韋達(dá)定理求得
和
的關(guān)系,利用點(diǎn)到直線的距離公式和弦長(zhǎng)公式求得
的面積,求得m和k的關(guān)系式,即可證明
為定值.
解:
橢圓C:
的焦點(diǎn)在x軸上,離心率為
,
,
橢圓C的四個(gè)頂點(diǎn)圍成的四邊形的面積為
,即
,
由
,解得:
,
,
橢圓的標(biāo)準(zhǔn)方程為:
;
證明:當(dāng)直線
軸時(shí),
,
的面積
,
解得:
,
,
故
.
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為
,
,
聯(lián)立
可得:
,
,即
,
由韋達(dá)定理可知
,
.
.
點(diǎn)O到直線l的距離為![]()
則
的面積
.
整理得:
,滿足
,代入
![]()
綜上
為定值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個(gè)不同地區(qū)去巡回醫(yī)療,一個(gè)地區(qū)去一名教師,共有多少種分派方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的右焦點(diǎn)為
,右頂點(diǎn)為
.已知
,其中
為原點(diǎn),
為橢圓的離心率.
(1)求橢圓的方程及離心率
的值;
(2)設(shè)過(guò)點(diǎn)
的直線
與橢圓交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數(shù)列,且![]()
B.
,
,
依次成公比為2的等比數(shù)列,且![]()
C.
,
,
依次成公比為
的等比數(shù)列,且![]()
D.
,
,
依次成公比為
的等比數(shù)列,且![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知拋物線
的頂點(diǎn)在坐標(biāo)原點(diǎn)
,對(duì)稱軸為
軸,焦點(diǎn)為
,拋物線上一點(diǎn)
的橫坐標(biāo)為
,且
.
(Ⅰ)求此拋物線
的方程;
(Ⅱ)過(guò)點(diǎn)
做直線
交拋物線
于
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)
,若存在
,使
成立,則稱
為
的不動(dòng)點(diǎn).已知函數(shù)
.
(1)當(dāng)
,
時(shí),求函數(shù)
的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)
,函數(shù)
恒有兩個(gè)相異的不動(dòng)點(diǎn),求
的取值范圍;
(3)在(2)的條件下,若
的兩個(gè)不動(dòng)點(diǎn)為
,
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
![]()
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對(duì)網(wǎng)購(gòu)平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng),從該系統(tǒng)中隨機(jī)選出100名交易者,并對(duì)其交易評(píng)價(jià)進(jìn)行了統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)都滿意的有40人.
(1)根據(jù)已知條件完成下面的
列聯(lián)表,并回答能否有
的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)服務(wù)滿意與對(duì)商品滿意之間有關(guān)”?
對(duì)服務(wù)滿意 | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品滿意 |
| ||
對(duì)商品不滿意 | |||
合計(jì) |
|
(2)若對(duì)商品和服務(wù)都不滿意者的集合為
.已知
中有2名男性,現(xiàn)從
中任取2人調(diào)查其意見(jiàn).求取到的2人恰好是一男一女的概率.
附:
(其中
為樣本容量)
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
:
,直線
:
.
(1)求直線
所過(guò)定點(diǎn)
的坐標(biāo);
(2)求直線
被圓
所截得的弦長(zhǎng)最短時(shí)
的值;
(3)已知點(diǎn)
,在直線
(
為圓心)上存在定點(diǎn)
(異于點(diǎn)
),滿足:對(duì)于圓
上任一點(diǎn)
,都有
為一常數(shù),試求所有滿足條件的點(diǎn)
的坐標(biāo)及該常數(shù).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com