已知數(shù)列
,
滿足
,
,
,數(shù)列
的前
項(xiàng)和為
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求證:
;
(3)求證:當(dāng)
時(shí),
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若數(shù)列{an}滿足
=p(p為正常數(shù),n∈N+),則稱{an}為“等方比數(shù)列”.
甲:數(shù)列{an}是等方比數(shù)列;乙:數(shù)列{an}是等比數(shù)列,則甲是乙的 條件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”選擇一個(gè)填入)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
前
項(xiàng)和
,
(1)求其通項(xiàng)
;(2)若它的第
項(xiàng)滿足
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
滿足
,
.
(1)求
的值,由此猜測(cè)
的通項(xiàng)公式,并證明你的結(jié)論;
(2)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a4a5=55,a3+a6=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}和數(shù)列{bn}滿足等式:
an-1=
,an=
(
為正整數(shù)),
設(shè)數(shù)列{bn}的前
項(xiàng)和
,cn=(an+19)(Sn+50),數(shù)列{cn}前n項(xiàng)和為Tn,
求Tn的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
的首項(xiàng)
,公差
,且第
項(xiàng)、第
項(xiàng)、第
項(xiàng)分別是等比數(shù)列
的第
項(xiàng)、第
項(xiàng)、第
項(xiàng).
(1)求數(shù)列
,
的通項(xiàng)公式;
(2)若數(shù)列
對(duì)任意
,均有
成立.
①求證:
; ②求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為等差數(shù)列,
,其前n項(xiàng)和為
,若
,
(1)求數(shù)列
的通項(xiàng);(2)求
的最小值,并求出相應(yīng)的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若數(shù)列
滿足
,則稱數(shù)列
為“平方遞推數(shù)列”.已知數(shù)列
中,
,點(diǎn)
在函數(shù)
的圖象上,其中
為正整數(shù).
(Ⅰ)證明數(shù)列
是“平方遞推數(shù)列”,且數(shù)列
為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前
項(xiàng)積為
,即
,求
;
(Ⅲ)在(Ⅱ)的條件下,記
,求數(shù)列
的前
項(xiàng)和
,并求使
的
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com