【題目】已知拋物線(xiàn)
,過(guò)點(diǎn)
的直線(xiàn)
交拋物線(xiàn)于
、
兩點(diǎn),設(shè)
為坐標(biāo)原點(diǎn),點(diǎn)
.
(1)求
的值;
(2)若
,
,
的面積成等比數(shù)列,求直線(xiàn)
的方程.
【答案】(1)
(2)直線(xiàn)
的方程為
或![]()
【解析】
(1)根據(jù)直線(xiàn)
的傾斜角與角
的關(guān)系,即可用直線(xiàn)
的斜率以及兩角和與差的正切公式求出
的值.
(2)將條件“
的面積成等比數(shù)列”等價(jià)轉(zhuǎn)化為“
成等比數(shù)列”,再將直線(xiàn)
的方程代入拋物線(xiàn)方程,利用韋達(dá)定理得到
的值,結(jié)合條件即可建立關(guān)于直線(xiàn)
的斜率
的方程,從而求出斜率
,得到直線(xiàn)
的方程.
解:(1)由題意直線(xiàn)
,
斜率均存在,且
,
.
∴
.
故
.
(2)由(1)知點(diǎn)
為拋物線(xiàn)的焦點(diǎn)
據(jù)題意,直線(xiàn)
的斜率存在且不為0,故可設(shè)直線(xiàn)
的方程為
.
由
.
設(shè)
、
,則有
,
,
.
若
,
,
的面積成等比數(shù)列,則
,
,
成等比數(shù)列
∴
,即:
.
∴![]()
∴
,則
.
解得,
或
,均滿(mǎn)足
.
故直線(xiàn)
的方程為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為計(jì)算
, 設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
(
)的離心率為
,且經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作直線(xiàn)
與橢圓
交于不同的兩點(diǎn)
,
,試問(wèn)在
軸上是否存在定點(diǎn)
使得直線(xiàn)
與直線(xiàn)
恰關(guān)于
軸對(duì)稱(chēng)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購(gòu)令”贊成人數(shù)如下表.
月收入(單位百元) |
|
|
|
|
|
|
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問(wèn)是否有99%的把握認(rèn)為“月收入以5500元為分界點(diǎn)對(duì)“樓市限購(gòu)令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計(jì) | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計(jì) | ______________ | ______________ | ______________ |
(2)試求從年收入位于
(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。
參考公式:
,其中
.
參考值表:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個(gè)區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.
(1)若n=6,則為甲圖著色時(shí)共有多少種不同的方法;
(2)若為乙圖著色時(shí)共有120種不同方法,求n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
上的偶函數(shù),其圖象關(guān)于點(diǎn)
對(duì)稱(chēng),且在區(qū)間
上是單調(diào)函數(shù),則
的值是( )
A.
B.
C.
或
D. 無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為
(t為參數(shù)),它與曲線(xiàn)C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長(zhǎng);
(2)以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為
,求點(diǎn)P到線(xiàn)段AB中點(diǎn)M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖
,在梯形
中,
,
,
為
的中點(diǎn),
是
與
的交點(diǎn),將
沿
翻折到圖
中
的位置,得到四棱錐
.
![]()
(1)求證:
;
(2)當(dāng)
,
時(shí),求
到平面
的距離.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com